Математическое моделирование. Формулировка основных типов задач лп, построение их математических моделей Математическая модель должна быть

Представь себе самолет: крылья, фюзеляж, хвостовое оперение, все это вместе – настоящий огромный, необъятный, целый самолет. А можно сделать модель самолета, маленькую, но все как взаправду, те же крылья и т.д., но компактный. Так же и математическая модель. Есть текстовая задача, громоздкая, на нее можно так посмотреть, прочесть, но не совсем понять, и уж тем более не ясно как решать ее. А что если сделать из большой словесной задачи ее маленькую модель, математическую модель? Что значит математическую? Значит, используя правила и законы математической записи, переделать текст в логически верное представление при помощи цифр и арифметических знаков. Итак, математическая модель – это представление реальной ситуации с помощью математического языка.

Начнем с простого: Число больше числа на. Нам нужно записать это, не используя слов, а только язык математики. Если больше на, то получается, что если мы из вычтем, то останется та самая разность этих чисел равная. Т.е. или. Суть понял?

Теперь посложнее, сейчас будет текст, который ты должен попробовать представить в виде математической модели, пока не читай, как это сделаю я, попробуй сам! Есть четыре числа: , и. Произведение и больше произведения и в два раза.

Что получилось?

В виде математической модели выглядеть это будет так:

Т.е. произведение относится к как два к одному, но это можно еще упросить:

Ну ладно, на простых примерах ты понял суть, я так полагаю. Переходим к полноценным задачам, в которых эти математические модели еще и решать нужно! Вот задача.

Математическая модель на практике

Задача 1

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где - расстояние в метрах, - время падения в секундах. До дождя время падения камешков составляло с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с? Ответ выразите в метрах.

О, ужас! Какие формулы, что за колодец, что происходит, что делать? Я прочел твои мысли? Расслабься, в задачах этого типа условия бывают и пострашнее, главное помнить, что тебя в этой задаче интересуют формулы и отношения между переменными, а что все это обозначает в большинстве случаев не очень важно. Что ты тут видишь полезного? Я лично вижу. Принцип решения этих задач следующий: берешь все известные величины и подставляешь. НО, задумываться иногда надо!

Последовав моему первому совету, и,подставив все известные в уравнение, получим:

Это я подставил время секунды, и нашел высоту, которую пролетал камень до дождя. А теперь надо посчитать после дождя и найти разницу!

Теперь прислушайся ко второму совету и задумайся, в вопросе уточняется, «на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с». Сразу надо прикинуть, тааак, после дождя уровень воды повышается, значит, время падения камня до уровня воды меньше и тут витиеватая фраза «чтобы измеряемое время изменилось» приобретает конкретный смысл: время падения не увеличивается, а сокращается на указанные секунды. Это означает, что в случае броска после дождя, нам просто нужно из начального времени c вычесть с, и получим уравнение высоты, которую камень пролетит после дождя:

Ну и наконец, чтобы найти, на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с., нужно просто вычесть из первой высоты падения вторую!

Получим ответ: на метра.

Как видишь, ничего сложного нет, главное, особо не заморачивайся, откуда такое непонятное и порой сложное уравнение в условиях взялось и что все в нем означает, поверь на слово, большинство этих уравнений взяты из физики, а там дебри похлеще, чем в алгебре. Мне иногда кажется, что эти задачи придуманы, чтоб запугать ученика на ЕГЭ обилием сложных формул и терминов, а в большинстве случаев не требуют почти никаких знаний. Просто внимательно читай условие и подставляй известные величины в формулу!

Вот еще задача, уже не по физике, а из мира экономической теории, хотя знаний наук кроме математики тут опять не требуется.

Задача 2

Зависимость объёма спроса (единиц в месяц) на продукцию предприятия-монополиста от цены (тыс. руб.) задаётся формулой

Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле. Определите наибольшую цену, при которой месячная выручка составит не менее тыс. руб. Ответ приведите в тыс. руб.

Угадай, что сейчас сделаю? Ага, начну подставлять то, что нам известно, но, опять же, немного подумать все же придется. Пойдем с конца, нам нужно найти при котором. Так, есть, равно какому-то, находим, чему еще равно это, а равно оно, так и запишем. Как ты видишь, я особо не заморачиваюсь о смысле всех этих величин, просто смотрю из условий, что чему равно, так тебе поступать и нужно. Вернемся к задаче, у тебя уже есть, но как ты помнишь из одного уравнения с двумя переменными ни одну из них не найти, что же делать? Ага, у нас еще в условии осталась неиспользованная частичка. Вот, уже два уравнения и две переменных, значит, теперь обе переменные можно найти - отлично!

– такую систему решить сможешь?

Решаем подстановкой, у нас уже выражена, значит, подставим ее в первое уравнение и упростим.

Получается вот такое квадратное уравнение: , решаем, корни вот такие, . В задании требуется найти наибольшую цену, при которой будут соблюдаться все те условия, которые мы учли, когда систему составляли. О, оказывается это было ценой. Прикольно, значит, мы нашли цены: и. Наибольшую цену, говорите? Окей, наибольшая из них, очевидно, ее в ответ и пишем. Ну как, сложно? Думаю, нет, и вникать не надо особо!

А вот тебе и устрашающая физика, а точнее еще одна задачка:

Задача 3

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому, где - мощность излучения звезды, - постоянная, - площадь поверхности звезды, а - температура. Известно, что площадь поверхности некоторой звезды равна, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.

Откуда и понятно? Да, в условии написано, что чему равно. Раньше я рекомендовал все неизвестные сразу подставлять, но здесь лучше сначала выразить неизвестное искомое. Смотри как все просто: есть формула и в ней известны, и (это греческая буква «сигма». Вообще, физики любят греческие буквы, привыкай). А неизвестна температура. Давай выразим ее в виде формулы. Как это делать, надеюсь, знаешь? Такие задания на ГИА в 9 классе обычно дают:

Теперь осталось подставить числа вместо букв в правой части и упростить:

Вот и ответ: градусов Кельвина! А какая страшная была задача, а!

Продолжаем мучить задачки по физике.

Задача 4

Высота над землей подброшенного вверх мяча меняется по закону, где - высота в метрах, - время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?

То были всё уравнения, а вот здесь надо определить, сколько мяч находился на высоте не менее трех метров, это значит на высоте. Что мы составлять будем? Неравенство, именно! У нас есть функция, которая описывает как летит мяч, где – это как раз та самая высота в метрах, нам нужна высота. Значит

А теперь просто решаешь неравенство, главное, не забудь поменять знак неравенства с больше либо равно на меньше, либо равно, когда будешь умножать на обе части неравенства, чтоб перед от минуса избавиться.

Вот такие корни, строим интервалы для неравенства:

Нас интересует промежуток, где знак минус, поскольку неравенство принимает там отрицательные значения, это от до оба включительно. А теперь включаем мозг и тщательно думаем: для неравенства мы применяли уравнение, описывающее полет мяча, он так или иначе летит по параболе, т.е. он взлетает, достигает пика и падает, как понять, сколько времени он будет находиться на высоте не менее метров? Мы нашли 2 переломные точки, т.е. момент, когда он взмывает выше метров и момент, когда он, падая, достигает этой же отметки, эти две точки выражены у нас в виде времени, т.е. мы знаем на какой секунде полета он вошел в интересующую нас зону (выше метров) и в какую вышел из нее (упал ниже отметки в метра). Сколько секунд он находился в этой зоне? Логично, что мы берем время выхода из зоны и вычитаем из него время вхождения в эту зону. Соответственно: - столько он находился в зоне выше метров, это и есть ответ.

Так уж тебе повезло, что больше всего примеров по этой теме можно взять из разряда задачек по физике, так что лови еще одну, она заключительная, так что поднапрягись, осталось совсем чуть-чуть!

Задача 5

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры от времени работы:

Где - время в минутах, . Известно, что при температуре нагревательного элемента свыше прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Действуем по отлаженной схеме, все, что дано, сперва выписываем:

Теперь берем формулу и приравниваем ее к значению температуры, до которой максимально можно нагреть прибор пока он не сгорит, то есть:

Теперь подставляем вместо букв числа там, где они известны:

Как видишь, температура при работе прибора описывается квадратным уравнением, а значит, распределяется по параболе, т.е. прибор нагревается до какой-то температуры, а потом остывает. Мы получили ответы и, следовательно, при и при минутах нагревания температура равна критической, но между и минутами - она еще выше предельной!

А значит, отключить прибор нужно через минуты.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ. КОРОТКО О ГЛАВНОМ

Чаще всего математические модели используются в физике: тебе ведь наверняка приходилось запоминать десятки физических формул. А формула – это и есть математическое представление ситуации.

В ОГЭ и ЕГЭ есть задачи как раз на эту тему. В ЕГЭ (профильном) это задача номер 11 (бывшая B12). В ОГЭ – задача номер 20.

Схема решения очевидна:

1) Из текста условия необходимо «вычленить» полезную информацию – то, что в задачах по физике мы пишем под словом «Дано». Этой полезной информацией являются:

  • Формула
  • Известные физические величины.

То есть каждой букве из формулы нужно поставить в соответствие определенное число.

2) Берешь все известные величины и подставляешь в формулу. Неизвестная величина так и остается в виде буквы. Теперь нужно только решить уравнение (обычно, довольно простое), и ответ готов.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

Основой для решения экономических задач являются математические модели.

Математической моделью задачи называется совокупность математических соотношений, описывающих суть задачи.

Составление математической модели включает:
  • выбор переменных задачи
  • составление системы ограничений
  • выбор целевой функции

Переменными задачи называются величины Х1, Х2, Хn, которые полностью характеризуют экономический процесс. Обычно их записывают в виде вектора: X=(X 1 , X 2 ,...,X n).

Системой ограничений задачи называют совокупность уравнений и неравенств, описывающих ограниченность ресурсов в рассматриваемой задаче.

Целевой функцией задачи называют функцию переменных задачи, которая характеризует качество выполнения задачи и экстремум которой требуется найти.

В общем случае задача линейного программирования может быть записана в таком виде:

Данная запись означает следующее: найти экстремум целевой функции (1) и соответствующие ему переменные X=(X 1 , X 2 ,...,X n) при условии, что эти переменные удовлетворяют системе ограничений (2) и условиям неотрицательности (3).

Допустимым решением (планом) задачи линейного программирования называется любой n-мерный вектор X=(X 1 , X 2 ,...,X n), удовлетворяющий системе ограничений и условиям неотрицательности.

Множество допустимых решений (планов) задачи образует область допустимых решений (ОДР).

Оптимальным решением (планом) задачи линейного программирования называется такое допустимое решение (план) задачи, при котором целевая функция достигает экстремума.

Пример составления математической модели

Задача использования ресурсов (сырья)

Условие: Для изготовления n видов продукции используется m видов ресурсов. Составить математическую модель.

Известны:

  • b i (i = 1,2,3,...,m) — запасы каждого i-го вида ресурса;
  • a ij (i = 1,2,3,...,m; j=1,2,3,...,n) — затраты каждого i-го вида ресурса на производство единицы объема j-го вида продукции;
  • c j (j = 1,2,3,...,n) — прибыль от реализации единицы объема j-го вида продукции.

Требуется составить план производства продукции, который обеспечивает максимум прибыли при заданных ограничениях на ресурсы (сырье).

Решение:

Введем вектор переменных X=(X 1 , X 2 ,...,X n), где x j (j = 1,2,...,n) — объем производства j-го вида продукции.

Затраты i-го вида ресурса на изготовление данного объема x j продукции равны a ij x j , поэтому ограничение на использование ресурсов на производство всех видов продукции имеет вид:
Прибыль от реализации j-го вида продукции равна c j x j , поэтому целевая функция равна:

Ответ - Математическая модель имеет вид:

Каноническая форма задачи линейного программирования

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися.

В том случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической.

Она может быть представлена в координатной, векторной и матричной записи.

Каноническая задача линейного программирования в координатной записи имеет вид:

Каноническая задача линейного программирования в матричной записи имеет вид:

  • А — матрица коэффициентов системы уравнений
  • Х — матрица-столбец переменных задачи
  • Ао — матрица-столбец правых частей системы ограничений

Нередко используются задачи линейного программирования, называемые симметричными, которые в матричной записи имеют вид:

Приведение общей задачи линейного программирования к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако при составлении моделей экономических задач ограничения в основном формируются в виде системы неравенств, поэтому необходимо уметь переходить от системы неравенств к системе уравнений.

Это может быть сделано следующим образом:

Возьмем линейное неравенство a 1 x 1 +a 2 x 2 +...+a n x n ≤b и прибавим к его левой части некоторую величину x n+1 , такую, что неравенство превратилось в равенство a 1 x 1 +a 2 x 2 +...+a n x n +x n+1 =b. При этом данная величина x n+1 является неотрицательной.

Рассмотрим все на примере.

Пример 26.1

Привести к каноническому виду задачу линейного программирования:

Решение:
Перейдем к задаче на отыскивание максимума целевой функции.
Для этого изменим знаки коэффициентов целевой функции.
Для превращения второго и третьего неравенств системы ограничений в уравнения введем неотрицательные дополнительные переменные x 4 x 5 (на математической модели эта операция отмечена буквой Д).
Переменная х 4 вводится в левую часть второго неравенства со знаком "+", так как неравенство имеет вид "≤".
Переменная x 5 вводится в левую часть третьего неравенства со знаком "-", так как неравенство имеет вид "≥".
В целевую функцию переменные x 4 x 5 вводятся с коэффициентом. равным нулю.
Записываем задачу в каноническом виде.

Четыре седьмых класса.

В 7А учатся 15 девочек и 13 мальчиков,

в 7Б - 12 девочек и 12 мальчиков,

в 7В - 9 девочек и 18 мальчиков,

в 7Г - 20 девочек и 10 мальчиков.

Если нам нужно ответить на вопрос, сколько учеников в каждом из седьмых классов, то нам 4 раза придется осуществлять одну и ту же операцию сложения:

в 7А 15 + 13 = 28 учеников;
в 7Б 12 +12 = 24 ученика;
в 7В 9 + 18 = 27 учеников;
в 7Г 20 + 10 = 30 учеников.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Пример 1.5.1.

Пусть некоторый экономический регион производит несколько (n) видов продуктов исключительно своими силами и только для населения данного региона. Предполагается, что технологический процесс отработан, а спрос населения на эти товары изучен. Надо определить годовой объем выпуска продуктов, с учетом того, что этот объем должен обеспечить как конечное, так и производственное потребление.

Составим математическую модель этой задачи. По ее условию даны: виды продуктов, спрос на них и технологический процесс; требуется найти объем выпуска каждого вида продукта.

Обозначим известные величины:

c i – спрос населения на i -й продукт (i =1,...,n ); a ij – количество i -го продукта, необходимое для выпуска единицы j -го продукта по данной технологии (i =1,...,n ; j =1,...,n );

х i – объем выпуска i -го продукта (i =1,...,n ); совокупность с =(c 1 ,..., c n ) называется вектором спроса, числа a ij – технологическими коэффициентами, а совокупность х =(х 1 ,..., х n ) – вектором выпуска.

По условию задачи вектор х распределяется на две части: на конечное потребление (вектор с ) и на воспроизводство (вектор х-с ). Вычислим ту часть вектора х которая идет на воспроизводство. По нашим обозначениям для производства х j количества j-го товара идет a ij · х j количества i -го товара.

Тогда сумма a i1 · х 1 +...+ a in · х n показывает ту величину i -го товара, которая нужна для всего выпуска х =(х 1 ,..., х n ).

Следовательно, должно выполняться равенство:

Распространяя это рассуждение на все виды продуктов, приходим к искомой модели:

Решая эту систему из n линейных уравнений относительно х 1 ,...,х n и найдем требуемый вектор выпуска.

Для того, чтобы написать эту модель в более компактной (векторной) форме, введем обозначения:

Квадратная (
) -матрицаА называется технологической матрицей. Легко проверить, что наша модель теперь запишется так:х-с=Ах или

(1.6)

Мы получили классическую модель «Затраты – выпуск », автором которой является известный американский экономист В. Леонтьев.

Пример 1.5.2.

Нефтеперерабатывающий завод располагает двумя сортами нефти: сортом А в количестве 10 единиц, сортом В - 15 единиц. При переработке из нефти получаются два материала: бензин (обозначим Б ) и мазут (М ). Имеется три варианта технологического процесса переработки:

I : 1ед.А + 2ед.В дает 3ед.Б + 2ед.М

II: 2ед.А + 1ед.В дает 1ед.Б + 5ед.М

III : 2ед.А + 2ед.В дает 1ед.Б + 2ед.М

Цена бензина - 10 долл. за единицу, мазута - 1 долл. за единицу.

Требуется определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.

Перед моделированием уточним следующие моменты. Из условия задачи следует, что «выгодность» технологического процесса для завода следует понимать в смысле получения максимального дохода от реализации своей готовой продукции (бензина и мазута). В связи с этим понятно, что «выбор (принятие) решения» завода состоит в определении того, какую технологию и сколько раз применить. Очевидно, что таких возможных вариантов достаточно много.

Обозначим неизвестные величины:

х i – количество использованияi -го технологического процесса(i=1,2,3) . Остальные параметры модели (запасы сортов нефти, цены бензина и мазута)известны .

Теперь одно конкретное решение завода сводится к выбору одного вектора х =(х 1 2 3 ) , для которого выручка завода равна(32х 1 +15х 2 +12х 3 ) долл. Здесь 32 долл. – это доход, полученный от одного применения первого технологического процесса (10 долл. ·3ед.Б + 1 долл. ·2ед.М = 32 долл.). Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего технологических процессов соответственно. Учет запаса нефти приводит к следующим условиям:

для сорта А :

для сорта В :,

где в первом неравенстве коэффициенты 1, 2, 2 – это нормы расхода нефти сорта А для одноразового применения технологических процессов I ,II ,III соответственно. Коэффициенты второго неравенства имеют аналогичный смысл для нефти сорта В.

Математическая модель в целом имеет вид:

Найти такой вектор х = (х 1 2 3 ) , чтобы максимизировать

f(x) =32х 1 +15х 2 +12х 3

при выполнении условий:

Сокращенная форма этой записи такова:

при ограничениях

(1.7)

Мы получили так называемую задачу линейного программирования.

Модель (1.7.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).

Пример1.5.3.

Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу j - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины b .

Заметим, что для правильного моделирования этой задачи от математика требуются определенные базовые знания в области портфельной теории ценных бумаг.

Обозначим известные параметры задачи:

n – число разновидностей ценных бумаг; а j – фактическая прибыль (случайное число) от j-го вида ценной бумаги; – ожидаемая прибыль отj -го вида ценной бумаги.

Обозначим неизвестные величины :

y j - средства, выделенные для приобретения ценных бумаг вида j .

По нашим обозначениям вся инвестированная сумма выражается как . Для упрощения модели введем новые величины

.

Таким образом, х i - это доля от всех средств, выделяемая для приобретения ценных бумаг видаj .

Ясно, что

Из условия задачи видно, что цель инвестора - достижение определенного уровня прибыли с минимальным риском. Содержательно риск - это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией прибыли для ценных бумаг вида i и вида j. Здесь М - обозначение математического ожидания.

Математическая модель исходной задачи имеет вид:

при ограничениях

,
,
,
. (1.8)

Мы получили известную модель Марковица для оптимизации структуры портфеля ценных бумаг.

Модель (1.8.) является примеров оптимизационной модели стохастического типа (с элементами случайности).

Пример1.5.4.

На базе торговой организации имеется n типов одного из товаров ассортиментного минимума. В магазин должен быть завезен только один из типов данного товара. Требуется выбрать тот тип товара, который целесообразно завести в магазин. Если товар типа j будет пользоваться спросом, то магазин от его реализации получит прибыльр j , если же он не будет пользоваться спросом - убытокq j .

Перед моделированием обсудим некоторые принципиальные моменты. В данной задаче лицом, принимающим решение (ЛПР), является магазин. Однако исход (получение максимальной прибыли) зависит не только от его решения, но и от того, будет ли завезенный товар пользоваться спросом, т. е. будет ли выкуплен населением (предполагается, что по какой-то причине у магазина нет возможности изучить спрос населения). Поэтому население может рассматриваться как второе ЛПР, выбирающее тип товара согласно своего предпочтения. Наихудшим для магазина «решением» населения является: «завезенный товар не пользуется спросом». Так что, для учета всевозможных ситуаций, магазину нужно считать население своим «противником» (условно), преследующим противоположную цель – минимизировать прибыль магазина.

Итак, имеем задачу принятия решения с двумя участниками, преследующими противоположные цели. Уточним, что магазин выбирает один из типов товаров для продажи (всего n вариантов решений), а население - один из типов товаров, который пользуется наибольшим спросом (n вариантов решений).

Для составления математической модели нарисуем таблицу с n строками и n столбцами (всего n 2 клеток) и условимся, что строки соответствуют выбору магазина, а столбики - выбору населения. Тогда клетка (i, j) соответствует той ситуации, когда магазин выбирает i -й тип товара (i -ю строку), а население выбирает j -й тип товара (j- ю столбик). В каждую клетку запишем числовую оценку (прибыль или убыток) соответствующей ситуации с точки зрения магазина:

Числа q i написаны с минусом для отражения убытка магазина; в каждой ситуации «выигрыш» населения (условно) равен «выигрышу» магазина, взятому с обратным знаком.

Сокращенный вид этой модели таков:

(1.9)

Мы получили так называемую матричную игру. Модель (1.9.) является примером игровых моделей принятия решения.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: