Совершенствование программ и методов ускоренных испытаний. Методы ускоренных испытаний

В настоящие время в лабораторных и стендовых испытаниях применяют следующие способы проведения испытаний:

Последовательный;

Параллельный;

Последовательно-параллельный;

Комбинированный.

При последовательном способе проведения испытаний один и тот же объект испытаний последовательно подвергается всем предусмотренным программой видам испытаний. Исключение составляют испытания при воздействии большинства химических и биологических ВВФ. Эти испытания проводят на различных выработках. Важнейшим условием проведения последовательных испытаний является соблюдение определенного порядка воздействия внешних факторов. Для скорейшего выявления потенциально ненадежных образцов и, следовательно, сокращения времени испытаний предусматривают такую последовательность ВВФ, при которой вначале действуют наиболее сильно влияющие на данный объект ВФ. Однако при этом теряется большая часть информации о влиянии других факторов, которая могла быть получена при их воздействии. Поэтому чаще на практике рекомендуется начинать испытания с воздействия на ЭС наименее жестких внешних факторов. Но при этом значительно увеличивается время проведения испытаний. Как видно, последовательность проведения испытаний ЭС играет важную роль. Поэтому для каждого вида ЭС устанавливается своя последовательность, которая указывается в ТУ или программе испытаний.

Характерной особенностью последовательного способа проведения испытаний является наличие эффекта накопления деградационных изменений в физической структуре объекта испытаний по мере перехода от одного внешнего ВФ к другому, в результате чего каждое воздействие предыдущего фактора оказывает влияние на результат испытаний при воздействии последующего, что, в свою очередь, усложняет интерпретацию результатов испытаний.

При параллельном способе проведения испытаний образец подвергается одновременному воздействию различных ВФ одновременно (параллельно) на нескольких выборках. Такой способ позволяет получить больший объем информации за более короткий промежуток времени, чем последовательный способ. Однако параллельный способ требует значительно большего числа испытываемых изделий, чем последовательный.

Последовательно-параллельный способ является компромиссным между последовательным и параллельным. Он позволяет в каждом конкретном случае более эффективно использовать преимущества того или иного способа. При последовательно-параллельном способе все изделия, отобранные для испытаний, разбиваются на несколько групп, которые испытываются параллельно. В каждой из групп испытания проводят последовательно. В данном случае все испытания должны быть разбиты на группы, число которых равно числу испытуемых групп. По своему составу группы испытаний должны формироваться так, чтобы, с одной стороны, продолжительность испытаний во всех группах была примерно одинаковой, а с другой, чтобы условия проведения объединенных в группу видов испытаний были близки к реальным.

Рассмотрим пример группирования различных видов испытаний при последовательно-параллельном способе их проведения .

Однако каждый из рассмотренных способов проведения испытаний предусматривает раздельное воздействие на объект ВФ, что является существенным отличием от реальных условий эксплуатации.

При комбинированном способе проведения испытаний на объект испытания одновременно воздействуют несколько внешних факторов (в основном, два).

Выбор сочетаний совместных воздействий различных факторов на испытываемое ЭС может производиться в соответствии с таблицей 6.1.

Основной причиной ограничения применения комбинированного способа проведения испытаний является отсутствие необходимого оборудования, а также сложность и дороговизна их проведения.

В заключение следует отметить, что многообразие разрабатываемой и выпускаемой аппаратуры не позволяет дать однозначной рекомендации по выбору способа и порядка проведения испытаний. Но можно с полной уверенностью сказать, что выбор того или иного алгоритма проведения испытаний должен проводиться исходя из условий его последующей эксплуатации, чтобы в процессе испытаний механизм отказов усиливался и все потенциально ненадежные образцы были обязательно выявлены.

Планирование испытаний

Проведению испытаний предшествует этап планирования, по результатом которого устанавливается необходимая совокупность данных о видах испытаний, об объемах испытуемых партий (выборок или проб), о нормах и допусках на контролируемые параметры и правила принятия решений.

Планирование испытаний имеет целью оптимизировать эксперимент по оценке (контролю) свойств ЭС. Такая оптимизация проводится по двум основным критериям, это - достоверность (точность) оценки свойств или экономическая эффективность испытаний.

В результате планирования испытаний необходимо ответить на следующие вопросы:

Целесообразно ли проводить испытания;

Какие должны быть характеристики плана испытаний.


Таблица 6.1



Целесообразность проведения испытаний определяют исходя из ожидаемого экономического эффекта.

Известно, что с ростом затрат на обеспечение качества (затраты на испытания, включая затраты на контроль) растет уровень качества и снижаются потери от брака и отказов. В связи с этим каждому показателю качества соответствует определенное соотношение между затратами, при которых введение испытаний экономически оправдано.

Пусть введение испытаний позволяет уменьшить число отказов у потребителя за определенный период на Dn, при этом у изготовителя число забракованных изделий возросло на Dn. При стоимости отказа С 0 (затраты на обнаружение отказа, ремонт, потери в результате простоя на ремонте, расходы на ликвидацию последствий отказа), стоимости изготовления одного отказавшего изделия С изг и стоимости испытаний С исп экономически оправдано введение испытаний при

DnC 0 /(DNC изг +С исп)>1, (1)

где DN – рост числа забракованных изделий.

Необходимые для оценки по формуле (1) первоначальные данные могут быть получены по результатам анализа экономических параметров предшествующих образцов или конструктивно-технологических аналогов.

Определив целесообразность проведения испытаний, приступают к их непосредственному планированию, в ходе которого разрабатывается программа испытаний и определяются характеристики плана испытаний.

Программа испытаний является основополагающим документом для проведения испытаний на стадии разработки и производства.

Программы испытаний различают по определяемым характеристикам ЭС. Они могут быть предназначены для проведения функциональных испытаний и испытаний на надежность. При разработке программ функциональных испытаний нужно предусмотреть, что их результатом является определение показателей качества и, главным образом, определение технических характеристик изделий, а при составлении программ испытаний на надежность, главным является общая оценка случайного события результата испытаний: положительный исход или отказ, а также установление времени работы до отказа.

Также следует различать программы испытаний, проводимые на стадиях разработки и производства, т.к. их задачи различаются.

Правильная организация испытаний на начальном этапе разработки ЭС позволяет сократить время на разработку данного ЭС. Это достигается за счет осуществления следующих мероприятий:

Проведения лабораторных испытаний прототипов разрабатываемых изделий с целью выдать проектировщикам данные и характеристики по результатам испытаний для построения математических и физических моделей и их дальнейшего исследования;

Проведения лабораторных корреляционных испытаний макетов в целях использования результатов для сравнения с данными, полученными в процессе математического моделирования и внесения необходимых поправок в модель;

Уточнения в процессе лабораторных испытаний правильности задания внешних воздействий и проверки на модели уточненных значений сигналов, имитирующих внешние воздействия;

Выявление в процессе лабораторных испытаний нерешенных проблем.

По результатам испытаний на стадии разработки должны быть даны рекомендации по усовершенствованию принципиальных схем и конструкций ЭС.

Основанием для разработки программы испытаний являются ТУ или ТЗ на ЭС. Программа испытаний должна предусматривать решение следующих основных задач.

1. Выбор объекта испытаний проводится на основе классификации изделий по функционально-конструктивному признаку (классы деталей, узлов, приборов, комплексов и систем) С точки зрения испытаний все классы изделий можно разделить на две группы:

Низшая группа включает в себя изделия, не имеющие самостоятельного эксплуатационного назначения (детали, узлы и блоки). Высшая группа соответственно содержит в себе изделия, имеющие самостоятельное эксплуатационное назначение.

Решение о проведении испытаний для низшей или высшей группы принимается конкретно для каждого случая.

Испытания изделий низшей группы позволяет применять более простое, дешевое и менее объемное испытательное оборудование. При таких испытаниях оказывается возможным быстро обнаружить слабые места конкретного изделия, так как на испытуемое изделие в процессе испытаний не оказывают влияния взаимодействующие с ним элементы. При этом возможно более быстрое принятие мер по усовершенствованию изделий и устранению обнаруженных неисправностей.

Испытания изделий высшей группы обеспечивают получение результатов, учитывающих взаимодействие различных узлов и блоков при меньшем числе образцов и за более короткое время.

В зависимости от класса изделий в программе испытаний может быть предусмотрена замена отказавших элементов в процессе испытаний.

2. Определение назначения (цели) испытаний , которое зависит от того, на какой стадии «жизненного» цикла изделия предполагается проводить испытания и какие характеристики изделия представляют интерес. В зависимости от стадии жизненного цикла изделия выбирают условия и место проведения испытаний.

Очевидно, что на стадии разработки, когда осуществляются исследовательские испытания, наиболее вероятным является проведение лабораторных испытаний. Однако в некоторых случаях возможно осуществление и полигонных испытаний.

На стадии производства также наиболее широкое применение получили лабораторные испытания. При этом возможно проведение стендовых, полигонных и даже эксплуатационных испытаний.

3. Выбор состава видов испытаний на воздействие внешних факторов осуществляется на основании требований, предъявляемых НТД на изделие, а также стандартов, предусматривающих перечень видов испытаний для изделий, предназначенных для эксплуатации только в районах с тропическим или холодным климатом. Выбирая виды испытаний, необходимо учитывать их различие не только по виду воздействующего фактора, но и по методу и режиму проведения. Важно определить, какие виды испытаний объединить для проведения комбинированных испытаний. В случае испытаний на стадии разработки следует установить, какие виды испытаний можно моделировать, а какие необходимо осуществлять с применением средств испытаний. Решение этого вопроса зависит от наличия испытательного оборудования, стоимости испытаний и от наличия высококвалифицированного персонала.

4. Оценка условий и места проведения испытаний зависит от стадии жизненного цикла изделия, а также от его технических особенностей. Очевидно, что на стадиях разработки и производства наибольшее применение имеют лабораторные, стендовые и полигонные испытания. Натурные и эксплуатационные - могут быть реализованы в целях получения необходимых данных для усовершенствования изделия.

5. Выбор испытательных режимов проводится в соответствии с действующими НТД на испытуемое изделие. На практике пользуются тремя видами норм на значения параметров испытательных режимов:

Предельные нормы;

Испытательные нормы;

Эксплуатационные нормы.

Предельные нормы это нормы, на которые рассчитывают изделия, приводятся в техническом отчете, и по ним испытания не проводятся.

Испытательные нормы , характеризуемые степенями жесткости, значения которых зависят от климатического и механического испытания изделия, указываются в ТУ. Испытательные нормы отличаются от предельных на величину производственного допуска. По ним проводятся испытания в процессе производства.

Эксплуатационные нормы ниже испытательных, указываемых в ТУ. В соответствии с эксплуатационными нормами разрешается эксплуатация изделий, и по ним проводятся испытания в процессе эксплуатации.

6. Определение контролируемых параметров испытуемых изделий, их значений и допустимых пределов отклонений осуществляется при различных внешних воздействиях. Одновременно должен быть определен перечень других показателей качества, которые подлежат контролю, а также допустимые пределы отклонения их значений в процессе испытаний. Также должны быть указаны режимы работы испытуемых изделий в процессе испытаний и продолжительность работы в данных режимах. Для контроля состояния ряда изделий необходимо уделять большое внимание визуальному осмотру и осуществлению методов неразрушаемого контроля.

7. Установление продолжительности каждого вида испытаний зависит от назначения (цели) испытаний, а также от определяемых характеристик изделия. При проведении функциональных испытаний продолжительность испытаний обычно задается НТД. Однако необходима разработка методик расчета продолжительности испытаний в зависимости от условий и продолжительности реальной эксплуатации. При испытаниях на надежность в основу разработки должны быть положены вероятностные и статистические методы, позволяющие обеспечить научно обоснованное планирование испытаний и оценку результатов. При этом продолжительность испытаний зависит от времени наработки на отказ для восстанавливаемых изделий и средней наработки на отказ для невосстанавливаемых изделий (в таком случае она может быть определена расчетным путем). Также следует установить, какова должна быть продолжительность испытаний в зависимости от того, планируется ли проведение нормальных, ускоренных или сокращенных испытаний.

8. Выбор последовательности (способа) проведения испытаний является одним из основных элементов программы испытаний - в ряде случаев может предусматриваться в НТД на изделие. В принципе, для обеспечения достоверности испытаний при выборе последовательности их проведения следует исключать сочетания воздействий ВФ, не соответствующих условиям эксплуатации.

9. Оценка общей продолжительности испытаний на все виды воздействия проводится на основании установленных ранее продолжительностях каждого вида испытаний и последовательности их проведения. При этом в случае выбора параллельно-последовательного способа может возникнуть необходимость пересмотра видов испытаний, включенных в параллельные группы для выравнивания общей продолжительности испытаний во всех группах.

10. Определение количества испытуемых изделий, так же как и установление продолжительности каждого вида испытаний, зависит от назначения (цели) испытаний и определяемых характеристик. Только при испытаниях на надежность число испытуемых изделий может быть определено расчетным путем при условии, что заданы вероятность безотказной работы, риск заказчика и поставщика, а также закон распределения отказов. Принято считать, что для восстанавливаемых изделий внезапные и постепенные отказы следуют экспоненциальному закону, а для невосстанавливаемых – биноминальному закону. Установив количество изделий, необходимых для испытаний, следует отобрать их из числа проверенных ОТК и в специальном документе указать номера.

11. Установление периодичности (срока) проведения испытаний изделий зависит от того, к какой группе они принадлежат. Периодичность проведения испытаний изделий низшей группы обычно больше, чем у высшей группы изделий, но в обоих случаях она зависит от вида производства и количества изделий, выпускаемых за контролируемый период. Периодичность испытаний следует указывать в ТУ на изделие; отбор изделий для испытаний осуществляется в порядке, предусмотренном в ТУ, из числа прошедших приемо-сдаточные испытания.

12. Выбор средств испытаний и определение характеристик приспособлений для установки испытуемых изделий в климатические камеры и на столах стендов для механических испытаний, в зависимости от конструкции, габаритных размеров и массы испытуемых изделий, проводится с учетом всех запланированных видов испытаний, а также требований к испытательным режимам и допускам на них. От качества приспособлений существенно зависит достоверность результатов испытаний. Для некоторых изделий приспособления унифицированы, и на них имеются НТД. В принципе необходимо, чтобы для изделий одного типа при испытаниях на различных предприятиях использовались одинаковые приспособления. Это обеспечивает идентичность условий проведения испытаний и повышает достоверность при проведении сравнения результатов испытаний.

13. Выбор средств измерений, используемых для контроля значений параметров изделий с заданными допусками, производимого до испытаний, во время них и после испытаний, завершается оформлением перечня с указанием их типов. Результаты этого контроля являются основными критериями оценки качества испытуемых изделий.

14. Разработка требований автоматизации процесса испытаний, регистрации и обработки результатов испытаний предусматривает применение ЭВМ, позволяющих обеспечить управление процессом испытаний, сбор измерительной информации, обработку сигналов, интерпретацию данных испытаний с представлением результатов в удобной форме, а также динамическое моделирование процессов испытаний. Для реализации перечисленных функций ЭВМ должна быть оснащена соответствующим программным обеспечением. При необходимости возможно совместное применение ЭВМ и средств измерений (например ЭВМ и газоанализатор, ЭВМ и самопишущий вольтметр и т.д.).

15. Метрологическое обеспечение процесса испытаний, реализуемое аттестацией всего испытательного оборудования и проверкой средств измерения значений параметров испытательных режимов и испытуемых изделий. Для осуществления аттестации должны использоваться специально предусмотренные НТД средства измерения, обладающие требуемыми точностными характеристиками. Аттестация должна осуществляться с заданной периодичностью.

Проведение испытаний предусматривает соблюдение правил техники безопасности и производственной санитарии . Наряду с общими требованиями, излагаемыми в соответствующих НТД, для различных видов испытаний должны предусматриваться специальные требования, приводимые в методиках испытаний.

В программе испытаний следует указать организацию, которая должна проводить испытания, и организации, участвующие в испытаниях. Помимо всего, в программе испытаний должно предусматриваться материально-техническое обеспечение испытаний, в том числе перечень и сроки поставок испытуемых изделий.

Кроме того, в программе испытаний указываются:

Состав участников испытаний;

Порядок их доступа к проведению испытаний;

Распределение обязанностей по проведению испытаний и составлению отчетной документации.

В заключение должны приводиться требования к отчетности и формулировка рекомендаций о дальнейшем использовании испытуемых изделий. При этом указываются критерии, которыми следует руководствоваться при решении вопроса об использовании испытуемого изделия после завершения всей программы испытаний (списание и уничтожение, ремонт и техническое обслуживание с последующим применением по прямому назначению с ограничениями или без).

  • III. Особенности проведения расследования несчастных случаев, происшедших в организациях и у работодателя - физического лица

  • ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

    МЕТОДИЧЕСКИЕ УКАЗАНИЯ

    НАДЕЖНОСТЬ В ТЕХНИКЕ. УСКОРЕННЫЕ ИСПЫТАНИЯ.
    ОСНОВНЫЕ ПОЛОЖЕНИЯ

    РД 50-424-83

    Москва

    ИЗДАТЕЛЬСТВО СТАНДАРТОВ

    РАЗРАБОТАНЫ Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ

    В.Ф. Курочкин, А.И. Кубарев, Е.И. Бурдасов, И.З. Аронов, Ж.Н. Буденная, К.А. Криштоф, Н.А. Сачкова, Т.Н. Дельнова, А.И. Кусков, Р.В. Кугель, В.П. Важдаев, К.И. Кузьмин, Л.Я. Подольский, Л.П. Лозицкий, А.Н. Ветров, В.Ф. Лопшов, В.Н. Любушкина, В.К. Медвежникова

    ВНЕСЕНЫ Государственным комитетом СССР по стандартам

    УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 10 октября 1983 г. № 4903

    РУКОВОДЯЩИЙ НОРМАТИВНЫЙ ДОКУМЕНТ

    Утверждены Постановлением Госстандарта от 10 октября 1983 г. № 4903, срок введения установлен с 1 января 1985 г.

    Настоящие методические указания распространяются на изделия машиностроения и приборостроения и устанавливают основные принципы ускорения испытаний на надежность, которые рекомендуется применять при разработке нормативно-методической (программы и методики) и технической (испытательное оборудование) основ системы государственных испытаний продукции по ГОСТ 25051.0-81.

    Основные понятия в области ускоренных испытаний на надежность и их определения приведены в справочном приложении.

    . ОБЩИЕ ПОЛОЖЕНИЯ

    где CN,N и - срок службы N -гo объекта в выборке объема N , упорядоченной по возрастанию, при нормальных и ускоренных испытаниях, соответственно;

    М - оператор математического ожидания.

    Коэффициент пересчета показателей надежности, выраженных через календарную продолжительность, определяют по методу равных вероятностей (черт. 1), который заключается в следующем. На стадии предварительных исследований берут две случайные выборки из одной и той же партии изделий. Одна из них испытывается в нормальных условиях, другая - в режиме ускоренных испытаний. В процессе испытаний фиксируются моменты отказа изделий. По полученным экспериментальным данным находится функция K 1,p (см. черт. ) как геометрическое место точек, соответствующих равным квантилям р. Чтобы убедиться, что функция K 1,p, будет инвариантом производства, необходимо повторить эксперимент на нескольких партиях. При наличии функции K 1,p результаты ускоренных испытаний любой другой выборки приводятся к нормальным условиям.

    Если же показатель надежности подсчитывают по наработке, то коэффициент пересчета равен единице.

    Пересчет показателей надежности по методу равных вероятностей

    С и С* - срок службы при нормальных и ускоренных испытаниях, соответственно; Р - вероятность недостижения предельного состояния; K 1,p - функция пересчета

    где αi , αj - доли наработки в i -м нормальном и j -м форсированном режимах, соответственно;

    Kji = 1 / Kij - коэффициент пересчета от j -го форсированного режима к i -му нормальному;

    Ki - коэффициент пересчета от комплексного форсированного режима к i -му нормальному;

    Kj - коэффициент пересчета от j -го форсированного к комплексному нормальному.

    Ускоренные испытания – испытания, методы и условия проведения которых обеспечивают получение необходимой информации о характеристиках свойств объекта в более короткий срок, чем при нормальных испытаниях или, что то же самое, при проектных условиях эксплуатации. Ускоренные испытания подразделяются на сокращенные и форсированные.

    Сокращенные испытания – ускоренные испытания без интенсификации процессов, вызывающих отказы или повреждения. Проведение сокращенных испытаний оправдано в случаях, когда возможен обоснованный прогноз поведения объекта при наработке, превышающей длительность проведенных испытаний.

    Форсированные испытания – ускоренные испытания с интенсификацией процессов, вызывающих отказы или повреждения. Результаты форсированных испытаний представительны для нормальных условий эксплуатации объекта тогда, когда имеются однозначные зависимости между воздействующим фактором и показателем надежности. Такие зависимости называю базовыми зависимостями.

    Ускорение испытаний характеризуется коэффициентом ускорения – числом, показывающим, во сколько раз продолжительность ускоренных испытаний меньше продолжительности нормальных испытаний (по наработке или по календарному времени). Форсируемый в испытаниях параметр называется ускоряющим фактором испытаний .

    На практике применяются различные методы ускоренных испытаний:

    Метод линейного возрастания нагружения – метод испытаний, в котором ускорение достигается при линейном повышении нагрузки во времени. Метод применим при линейной зависимости определяющих параметров от времени и постоянной скорости деградационных процессов в условиях эксплуатации.

    Метод экстраполяции по нагрузке – метод испытаний при нескольких повышенных уровнях нагрузки и последующей экстраполяции результатов на нормальный уровень нагрузки. Метод применим, когда имеется однозначная зависимость определяемого показателя надежности от нагрузки.

    Метод экстраполяции по времени – метод испытаний при нормальных нагрузках в течение времени, за которое накапливаются сведения о накоплении повреждений, достаточные для их экстраполяции на заданную наработку или до наступления отказа. Экстраполяцию нежелательно распространять на интервалы времени, превышающие время испытаний более чем в 1,5 раза.

    Метод одноступенчатого нагружения («доламывания») – метод испытаний, в котором объект подвергается повышенной нагрузке после длительной работы при нормальной нагрузке. Применение этого метода правомерно при условии корректности принципа суммирования повреждений. На практике этот режим реализуется следующим образом: после нормальных испытаний объект подвергают форсированным испытаниям до исчерпания ресурса работоспособного состояния. Оценивают остаточный ресурс при форсированном режиме. Сравнивают его с полным средним ресурсом объекта в форсированном режиме. Если этих сведений нет, то проводят испытания новых объектов в форсированном режиме для оценки среднего ресурса. Сравнение полного и остаточного ресурса позволяет оценить степень исчерпания ресурса в проведенных нормальных испытаниях объекта и его полный ресурс в условиях эксплуатации.

    Метод интенсификации приработки – метод испытаний, в котором форсируется период приработки. Применим, когда объекту присущ длительный период приработки.

    Метод эквивалентных испытаний – метод, в котором испытания проводятся при повышенных нагрузках с анализом влияния на надежность каждого вида нагружения.

    Методы уплотнения графика испытаний – методы, в которых сокращаются промежутки между циклами испытаний или увеличивается скорость нагружения. В этом методе есть вероятность получить консервативную оценку показателя надежности.

    Метод усечения спектра нагрузок – метод испытаний, в котором исключаются режимы нагружения, характерные для условий эксплуатации, но слабо влияющие на надежность. Применение этого метода правомерно, когда есть полная уверенность относительно слабого влияния на надежность исключенных из графика испытаний режимов.

    Метод сравнения с аналогами – метод испытаний в форсированных режимах со сравнением результатов испытаний с результатами, полученными на аналогичных объектах. Выводы по результатам сравнения могут распространяться на эти же режимы или на нормальные условия, в зависимости от объема и полноты имеющейся информации по аналогам.

    Результаты ускоренных и нормальных испытаний должны быть сопоставимы, т.е. при идентичной природе отказа получаемые в этих испытаниях значения показателей надежности должны быть одинаковы. Например, равенство вероятности безотказной работы, получаемой в ускоренных (индекс «у») и нормальных (индекс «н») испытаниях, при экспоненциальном законе ее распределения означает выполнение равенства: ехр (-λ н t н )=ехр (-λ у t у ). Получив в ускоренных испытаниях значение интенсивности отказов, можно оценить интенсивность отказов в нормальных условиях из соотношения λ у =λ н k , полагая при этом, что коэффициент ускорения испытаний по времени k=t н/ t у при выбранных нагрузках эквивалентен коэффициенту ускорения испытаний по показателю надежности (вероятности безотказной работы).

    Основной вопрос планирования ускоренных испытаний заключается в наличии базовой зависимости, отражающей влияние воздействующего фактора или нагрузки на показатель надежности. Источниками базовых зависимостей могут быть доступные сведения об аналогах. Если таковых нет, то для нахождения базовой зависимости проводятся исследовательские испытания в требуемом диапазоне изменения параметров испытаний. Следующий шаг – выбор ускоряющего фактора и режима ускоренных испытаний. В любом случае при планировании и проведении ускоренных испытаний учитываются результаты всех видов испытаний, проведенных при разработке и постановке на производство данного изделия.

    Основное условие при выборе ускоряющего фактора – неизменность по сравнению с нормальными условиями физико-химических процессов, влияющих на надежность. Ускоряющий фактор должен хорошо контролироваться, легко меняться и воспроизводиться. Чаще всего этим требованиям удовлетворяет повышенная температура. Например: При отказах под воздействием термоактивируемых процессов средняя интенсивность отказов (и средняя наработка до отказа тоже) зависит от температуры по закону Аррениуса: λ=λ 0 ехр (-Е/kТ ). Или, общепринятая зависимость длительной прочности от температуры Т и напряжения σ при сроке службы более 100 тыс. часов имеет вид: Т р =аТ 2 σ -n ехр (b-сσ ).

    Для преодоления проблемы малых вероятностей разработаны методы ускоренных испытаний . В рамках ускоренных испытаний можно выделить два подхода.

    Первый подход предполагает испытания в условиях, когда используются факторы, ускоряющие процесс возникновения отказов, сбоев, ошибок, напримерповышение температуры, влажности, увеличение вибрации и т.п. При этом предварительно должны быть получены зависимости изменения показателей безопасности от изменения ускоряющего фактора в нормальных и форсированных режимах, что является задачей не меньшей сложности, чем обычные испытания. Эти зависимости часто имеют характер корреляционных связей, а это означает, что с их помощью можно установить не строго определенное значение показателя надежности, а область его возможных значений. Испытания в форсированных условиях могут привести к разрушению изделия, при котором возникают физико-химические процессы, не характерные для нормальных условий функционирования. Кроме того, использование ускоряющих факторов может не дать значительного ускоряющего эффекта. Поэтому целесообразен второй подход.

    Второй подход предполагает использование методов понижения дисперсии, и в частности метода существенной выборки . Данный метод, как и другие методы понижения дисперсии, заключаются в искусственном повышении вероятностей ошибок и сбоев путем их генерации и последующего пересчета на реальный режим функционирования. Методы понижения дисперсии получили значительное распространение в имитационном моделировании систем, когда аналитические расчеты либо затруднительны, либо просто невозможны вследствие сложности анализируемых систем.

    Как известно, моделирование есть средство изучения системы путем замены ее более удобной для экспериментального исследования системой (моделью), сохраняющей существенные черты оригинала, и испытания модели методом проб. Модель воспроизводит описание системы с большими или меньшими упрощениями. При этом должен достигаться разумный компромисс между точностью воспроизведения и сложностью необходимых для этого средств.

    Методы программной имитации случайных процессов реализуют имитационное моделирование систем. При этом случайные воздействия искусственно воспроизводятся программными или физическими датчиками, включенными в общую схему моделирования.

    Традиционный способ программной имитации случайных функций любой сложности сводится к генерации некоторых стандартных (базовых) процессов. Наиболее часто применяемым базовым воздействием при цифровом моделировании является последовательность чисел v 0 , ..., v n , представляющих собой реализацию независимых равномерно распределенных в интервале (0, 1) случайных событий. Фактически в силу ряда причин используется псевдослучайная последовательность равномерно распределенных чисел, так как она имеет циклический характер. На основе данной последовательности путем некоторых преобразований может быть получена квазислучайная последовательность случайных чисел (дискретных и непрерывных), имеющих любое распределение вероятностей. Так, для генерации непрерывных случайных воздействий наиболее распространенным методом является метод обратной функции, в соответствии с которым случайная величина w, имеющая распределение вероятностей с монотонной функцией F, генерируется из равномерно распределенной случайной величины v по формуле iv = F _1 (v). Например, случайная величина с экспоненциальным распределением имитируется по формуле w = -A _1 ln(v/A.), где X - интенсивность отказов.

    Существуют и другие методы генерации случайных воздействий: метод исключения, метод композиции и т.п. Для некоторых распределений (например,для нормального распределения вероятностей и др.), используются специальные методы, ориентированные только на данный класс распределений. Так, при генерации нормально распределенных случайных чисел с математическим ожиданием т и среднеквадратическим отклонением а используется свойство сходимости сумм независимых случайных величин к нормальному распределению, т.е.

    где п - количество реализаций равномерно распределенных в интервале (0, 1) случайных чисел, необходимое для получения одного нормально распределенного числа.

    Таким образом, при имитационном моделировании генерируются случайные воздействия на модель системы с заданными законами распределения, в результате действия которых определяются значения случайного выходного параметра или параметров анализируемой системы.


    ИЗДАТЕЛЬСТВО СТАНДАРТОВ

    РАЗРАБОТАНЫ Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ

    В.Ф. Курочкин, А.И. Кубарев, Е.И. Бурдасов, И.З. Аронов, Ж.Н. Буденная, К.А. Криштоф, Н.А. Сачкова, Т.Н. Дельнова, А.И. Кусков, Р.В. Кугель, В.П. Важдаев, К.И. Кузьмин, Л.Я. Подольский, Л.П. Лозицкий, А.Н. Ветров, В.Ф. Лопшов, В.Н. Любушкина, В.К. Медвежникова

    Утверждены Постановлением Госстандарта от 10 октября 1983 г. № 4903, срок введения установлен с 1 января 1985 г.

    Настоящие методические указания распространяются на изделия машиностроения и приборостроения и устанавливают основные принципы ускорения испытаний на надежность, которые рекомендуется применять при разработке нормативно-методической (программы и методики) и технической (испытательное оборудование) основ системы государственных испытаний продукции по ГОСТ 25051.0-81.


    Основные понятия в области ускоренных испытаний на надежность и их определения приведены в справочном приложении.

    1 . ОБЩИЕ ПОЛОЖЕНИЯ

    1.1. Принцип или сочетание принципов ускорения испытаний на надежность устанавливают в типовых программах и методиках головные организации по государственным испытаниям для закрепленных за ними видов изделий или по их поручению разработчик продукции.

    1.2. Установленные по п. 1.1 принципы ускорения должны применяться при разработке методов испытаний на надежность для включения в конструкторские (ПМ, ТУ) и нормативно-технические (стандарты вида ОТУ, ТУ, методов испытаний) документы на конкретные виды изделий.

    1.3. Выбор принципа или сочетания принципов ускорения испытаний на надежность должен обеспечить максимальное возможное сокращение продолжительности испытаний с воспроизведением отказов при их наличии в последовательности и номенклатуре, характерных для нормальных условий испытаний.


    сокращения перерывов в работе;

    исключения холостых ходов;

    устранения простоев;

    сокращения времени на вспомогательные работы;

    исключения нерабочих климатических периодов и т.п.


    Коэффициент пересчета показателей надежности, выраженных через календарную продолжительность, определяют по методу равных вероятностей (черт. 1), который заключается в следующем. На стадии предварительных исследований берут две случайные выборки из одной и той же партии изделий. Одна из них испытывается в нормальных условиях, другая - в режиме ускоренных испытаний. В процессе испытаний фиксируются моменты отказа изделий. По полученным экспериментальным данным находится функция K 1,p (см. черт. 1 ) как геометрическое место точек, соответствующих равным квантилям р. Чтобы убедиться, что функция K 1,p , будет инвариантом производства, необходимо повторить эксперимент на нескольких партиях. При наличии функции K 1,p результаты ускоренных испытаний любой другой выборки приводятся к нормальным условиям.

    Если же показатель надежности подсчитывают по наработке, то коэффициент пересчета равен единице.

    Пересчет показателей надежности по методу равных вероятностей

    С и С* - срок службы при нормальных и ускоренных испытаниях, соответственно; Р - вероятность недостижения предельного состояния; K 1,p - функция пересчета

    2.2.2. Экстраполяцию по наработке осуществляют на основе модели отказов, параметры которой оценивают по результатам усеченных испытаний.

    Различают модели отказов, основанные на изучении закономерности изменения выходных параметров и статистики отказов изделия.

    2.2.2.1. Параметрическая модель (вариант) представлена на черт. 2 . Здесь вероятность отказа F (t ) определяется характером изменения выходного параметра X . В начальный момент (t= 0) для выборки изделий объемом N имеет место рассеивание выходного параметра f (X 0) относительно среднего значения X 0 . По мере увеличения наработки выходной параметр изменяется в соответствии с протеканием деградационных процессов. В общем случае существенное изменение параметра X может начаться после некоторой наработки t в и протекать со случайной скоростью, изменяющейся во времени, v x = dx/d t. Измеряя выходной параметр изделий в момент усечения испытаний t y , можно получить плотность распределения значений выходного параметра f (x,t ), которая определяет вероятность выхода параметра X за границу Х max , т.е. вероятность отказа F (t ) = 1 - P (t ).

    2.2.2.2. Цензурированная модель основана на регистрации моментов отказов до усечения испытаний, что приводит к получению выборки, представляющей собой наработки всех N объектов испытаний как отказавших, так и оставшихся работоспособными.

    Различают цензурирование двух типов:

    тип I - прекращение испытаний при заданной наработке;

    тип II - при заданном количестве отказов.

    Параметрическая модель (вариант)

    X - ?(t ) - выходной параметр изделия; Х max - предельное допустимое значение выходного параметра; f (X 0) - плотность распределения выходного параметра в начале испытаний; t в - начало старения, износа и т.д.; f (t ) - плотность распределения наработок до отказа; F (t ) = 1 - P (t ) - вероятность отказа; f (x,t ) - плотность распределения выходного параметра; f (v x) - плотность распределения скорости изменения выходного параметра; t - наработка; t у - момент усечения испытаний

    2.2.2.3. Коэффициент ускорения испытаний при экстраполяции по наработке

    где C N,N - продолжительность испытаний, соответствующая наработке t N,N - последнего образца в упорядоченной выборке объема N ;

    C r,N - то же, для r -го образца;

    С у - то же, для момента усечения;

    М - оператор математического ожидания.

    Коэффициент пересчета показателей надежности, выраженных через наработку, равен единице. Если показатель надежности подсчитывают по календарной продолжительности, то коэффициент пересчета определяют по методу равных вероятностей (см. черт. 1 ).

    2.3. Ускорения испытаний в форсированном режиме достигают интенсификацией деградационных процессов. Различают две группы принципов форсирования испытаний, отличающиеся способом пересчета их результатов на нормальные условия;

    требующие предварительного определения коэффициента пересчета;

    позволяющие оценивать результаты испытаний без предварительного определения коэффициента пересчета.

    2.3.1. К группе принципов, требующих предварительного определения коэффициента пересчета, относят:

    усечение спектра нагрузок;

    повышение скорости приложения нагрузок;

    принцип сравнения.

    2.3.1.1. Усечение спектра нагрузок заключается в исключении части нагрузок, не оказывающих заметного повреждающего действия (в чем следует предварительно убедиться) на объект испытаний, что приводит к повышению среднего уровня нагрузок и, следовательно, более быстрому исчерпанию ресурса.

    Частным случаем усечения спектра нагрузок является исключение установившейся части рабочего цикла (режим «пуск-остановка», «разгон-торможение» и т.п.), т.е. работа в неустановившемся режиме.

    2.3.1.2. Повышение скорости приложения нагрузок осуществляется на основе увеличения частоты циклического нагружения или скорости движения под нагрузкой. Предварительно убеждаются, что увеличение частоты нагружения (усталость) или скорости скольжения (износ) не искажают природу отказов.

    2.3.1.3. Принцип сравнения основан на использовании данных об аналогичных изделиях. В зависимости от имеющейся информации оценка надежности изделий производится следующими способами:

    сравнением показателей надежности двух видов изделий по результатам только форсированных испытаний;

    сравнением показателей надежности изделия в форсированном режиме с результатами испытаний в этом и нормальном режимах изделия-аналога;

    пересчетом результатов испытаний изделия в форсированном режиме к нормальному режиму по имеющейся зависимости показателей надежности от уровня нагрузки.

    2.3.2. К группе принципов, не требующих предварительного определения коэффициента пересчета, относят:

    экстраполяцию по нагрузке;

    принцип «доламывания»;

    принцип запросов.

    2.3.2.1. Примерами принципа экстраполяции по нагрузке служат методы оценки предела выносливости (методы Шварева, Штромейера, Муратова, Про, Нэдэшана и т.д.). При использовании методов экстраполяции необходимо уделять серьезное внимание достоверности определения параметров зависимостей, правомерности выбора их вида, оценке допустимых пределов экстраполяции и выбору интервала варьирования переменных в эксперименте.

    2.3.2.2. Принцип «доламывания» заключается в следующем. Изделия, имеющие различную наработку в нормальном режиме, доводят до отказа (предельного состояния) в форсированном режиме. В форсированном же режиме определяют показатели надежности новых изделий (не имеющих наработки в нормальном режиме). На основании этих сведений определяют показатели надежности в нормальном режиме, используя подходящую теорию накопления повреждений. Возможна и другая последовательность нагружения - сначала в форсированном, затем - в нормальном режимах.

    2.3.2.3. Принцип запросов применяется в случаях, когда возможно измерение выходного параметра, выход которого за допустимые пределы означает отказ. В ходе испытаний нормальные и форсированные режимы нагружения чередуются.

    2.3.3. Коэффициент ускорения испытаний подсчитывается по формуле (1 ), где C N,N * означает продолжительность форсированных испытании.

    Коэффициенты пересчета показателей надежности определяют по методу равных вероятностей.

    Для элементов изделия, испытываемого в нескольких различных нормальных и форсированных режимах (например, для обеспечения «синхронности» накопления повреждений), коэффициент пересчета показателей надежности (типа «средний») определяется по формуле

    (3)

    где? i , ? j - доли наработки в i -м нормальном и j -м форсированном режимах, соответственно;

    K ji = 1 / K ij - коэффициент пересчета от j -го форсированного режима к i -му нормальному;

    K i - коэффициент пересчета от комплексного форсированного режима к i -му нормальному;

    K j - коэффициент пересчета от j -го форсированного к комплексному нормальному.

    Из (3 ) вытекают два часто применяемых частных случая:

    когда нормальный режим один, а форсированных несколько, и

    ,

    когда нормальных режимов несколько, а форсированный только один.

    2.4. Перечисленные принципы ускорения испытаний могут быть использованы как индивидуально, так и в любом сочетании. Если взаимное влияние принципов отсутствует, то коэффициент ускорения при их совместном применении

    где K q - коэффициент ускорения испытаний при использовании q- го принципа;

    Количество использованных принципов.

    3 . ОСНОВНЫЕ ПРИНЦИПЫ УСКОРЕНИЯ КОНТРОЛЬНЫХ ИСПЫТАНИЙ

    3.1. Контрольные испытания, целью которых является подтверждение нормированных показателей надежности, осуществляют по методам:

    доверительных интервалов (одно- или двусторонних);

    сравнения тотечных оценок и дисперсий показателей надежности;

    статистического приемочного контроля.

    3.2. Для двух первых методов используют принципы ускорения и коэффициенты ускорения и пересчета, изложенные в разд. 2 .

    3.3. При статистическом приемочном контроле используют принципы ускорения, изложенные в разд. 2 . Коэффициент ускорения испытаний

    где С н - продолжительность нормальных испытаний;

    С у - продолжительность ускоренных испытаний.

    4 . ТРЕБОВАНИЯ К РАЗРАБОТКЕ МЕТОДОВ УСКОРЕННЫХ ИСПЫТАНИЙ

    4.1. Ускорение испытаний, как правило, основано на использовании априорных сведений о надежности объекта испытаний. Для получения этих сведений необходимо провести предварительные исследования, включающие в общем случае следующие этапы:

    исследование условий работы изделия;

    исследование эксплуатационной нагруженности изделия;

    исследование надежности в эксплуатации;

    изучение характера и причин отказов;

    выбор принципа ускорения, условий и режимов испытаний;

    выбор, а при необходимости, разработка и создание испытательного оборудования;

    проведение ускоренных испытаний на надежность;

    анализ результатов предварительных исследований, установление их адекватности, сопоставление с результатами эксплуатационных наблюдений, разработка модели отказов и определение функции пересчета на нормальные условия.

    4.2. Исследование условий работы изделия заключается в рассмотрении существующих вариантов использования изделия с целью выбора типичных условий его эксплуатации и установления их статистических характеристик.

    4.3. Исследование эксплуатационной нагруженности элементов изделия следует проводить как в типичных, так и экстремальных условиях эксплуатации по ГОСТ 23603-79, ГОСТ 23604-79 и ГОСТ 23605-79.

    4.4. Результаты исследования надежности в эксплуатации должны быть увязаны с результатами работ по пп. 4.2 и 4.3 общностью условий эксплуатации.

    4.5. На основании совместного анализа нагруженности элементов изделия, характера и причин их отказов выбирается один или сочетание нескольких принципов ускорения испытаний.

    4.6. Объектами предварительных исследований выбирают изделия серийного производства, а результатом разработки является методика, распространяющаяся на группу однородных изделий, в которую входят упомянутые серийные изделия. Приемлемость методики для изделий других типов, в том числе и новых, должна быть подтверждена анализом различий объектов или условий их эксплуатации. При этом возможна корректировка ранее разработанной методики.

    4.7. Количество объектов для предварительных исследований должно быть выбрано из условия получения коэффициента пересчета на нормальные условия, обеспечивающего выполнение требований п. 1.4 .

    ПРИЛОЖЕНИЕ

    Справочное

    ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩИХ МЕТОДИЧЕСКИХ УКАЗАНИЯХ, И ИХ ОПРЕДЕЛЕНИЯ

    Определение

    Нормальные испытания

    По ГОСТ 16504-81

    Ускоренные испытания

    По ГОСТ 16504-81

    Сокращенные испытания

    По ГОСТ 16504-81

    Примечание. Применительно к испытаниям на надежность программа испытаний сокращается в части объема (продолжительности) испытаний. Испытания проводят в нормальных условиях

    Форсированные испытания

    Ускоренные испытания, основанные на интенсификации деградационных процессов, приводящих к отказу (предельному состоянию)

    Усеченные испытания

    Испытания, прекращаемые при достижении заданной наработки

    Коэффициент ускорения

    Отношение математических ожиданий продолжительности нормальных и ускоренных испытаний

    Коэффициент пересчета

    Отношение одноименных показателей надежности, оцененных при нормальных и ускоренных испытаниях

    Принцип ускорения испытаний

    Совокупность теоретических и экспериментальных закономерностей или обоснованных допущений, на основе использования которых достигается сокращение продолжительности испытаний

    Метод ускоренных испытаний

    Правила применения принципов ускорения и средств испытаний

    Режим ускоренных испытаний

    Режим функционирования изделия, предусмотренный методом ускоренных испытаний

    Нормальный режим

    Режим функционирования изделия, параметры которого находятся в пределах, установленных в технической документации для нормальных условий испытаний

    Форсированный режим

    Режим функционирования изделия, параметры которого находятся в пределах, установленных в технической документации для условий форсированных испытаний

    СПИСОК ЛИТЕРАТУРЫ

    Ускоренные испытания изделий машиностроения на надежность. Вып. 2. - М: Изд-во стандартов, 1969.

    Проников А.С., Дунин-Барковский И.В. Классификация методов испытаний машин на надежность. - Надежность и контроль качества, 1969, № 1, с 10 - 24.

    Перроте А.И., Карташов Г.Д., Цветаев К.Н. Основы ускоренных испытаний радиоэлементов на надежность. - М.: Советское радио, 1968.

    Методические вопросы исследований прочности деталей тракторов и других самоходных машин. / Труды НАТИ, вып. 195. М., НАТИ 1968.

    Ускоренные испытания на надежность. Стендовые испытания траншейных экскаваторов / Труды ВНИИНМАШ, вып. 10. - М.: Изд-во стандартов, 1974.

    Бурдасов Е.И., Кисиль В.В. Метод оценки эксплуатационной долговечности амортизаторов подвески силового агрегата автомобиля. - Каучук и резина. 1974. № 7, с. 29 - 31.

    Яценко Н.Н., Шалдыкин В.П. Оптимальное планирование испытаний на автополигоне. - Автомобильная промышленность, 1974, № 7, с. 14 - 17.

    Анилович В.Я., Сычев И.П. К определению коэффициента перехода от результатов стендовых испытаний к результатам испытаний в эксплуатационных условиях. - Вестник машиностроения, 1969, № 6, с. 28 - 30.

    Величкин И.Н., Кугель Р.В., Дмитриченко С.С., Дьяков И.Я. Ускоренные испытания надежности, тракторов, их агрегатов и узлов. - Тракторы и сельхозмашины, 1975, № 11, с. 31 - 33.

    Майоров А.В., Потюков Н.П. Планирование и проведение ускоренных испытаний на надежность устройств электронной автоматики. - М.: Радио и связь, 1982.

    Выбор методов и средств сравнительных испытаний на надежность изделий машиностроения при аттестации. Методы ускоренных испытаний. MP 37-82. - М., ВНИИНМАШ, 1982.

    1. Общие положения . 1

    2. Основные принципы ускорения определительных испытаний . 2

    3. Основные принципы ускорения контрольных испытаний . 6

    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: