Схемы приборов для измерения емкости аккумулятора. Цифровой измеритель ёмкости и внутреннего сопротивления аккумуляторов

Приветствую, граждане Датагории! Позвольте представить вам очередное моё творение - тестер емкости аккумуляторной батареи. Устройство, конечно, не на каждый день, но иногда без него швах!

Понадобилось мне измерить оставшуюся ёмкость кислотного аккумулятора, зимой ведь каждый Ампер на счету, может пора и заменить батарею? Простые тесты с нагрузочной вилкой и измерением плотности меня не устраивали, они не давали мне информации о том, хватит ли мне энергии прогреть автомобиль 40 минут на ПЖД (примерно 8 А/ч) и потом запустить автомобиль стартером.

Схема тестера ёмкости АКБ

Как и всякое дитя, это рождалось в муках. В основном из-за ошибок «акушера».

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только



Контроллер управляемого разряда



Расстановка фьюзов при программировании МК ATmega8A


5. Все номиналы деталей указаны на ПП.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»


Печатная плата в ЛэйАут: ▼ 🕗 24/10/14 ⚖️ 144,03 Kb ⇣ 124 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

Этот измеритель емкости может измерять емкость конденсаторов с разрешением 1 пФ в нижнем конце диамазона. Максимальная измеряемая емкость - 10000 мкФ. Реальная точность не известна, но линейная ошибка лежит в пределах максимум 0.5 % , и обычно меньше 0.1% (получено измерением параллельно подключенных нескольких конденсаторов). Наибольшие затруднения возникают при измерении электролитических конденсаторов большой емкости.

Измеритель емкости работает в режиме автоматического выбора пределов измерения, либо в нижнем или верхнемдиапазоне емкостей принудительно. Прибор имеет два различных предела измерения, реализуя два измерения для одного и того же конденсатора. Это дает возможность проверить правдивость измерения и узнать, действительно ли измеряемая деталь является конденсатором. При этом методе электролиты проявляют свою характерную нелинейность, давая разные значения при разных пределах измерения.

Измеритель емкости имеет систему меню, которая в том числе позволяет откалибровать нулевое значение и емкость в 1 мкФ. Калибровка сохраняется в EEPROM.

Для проекта был выбран один из самых маленьких чипов - Атмега8. Схема питается от 9-вольтовой батарейки через линейный регулятор 7805.

Прибор может работать в трех режимах: измерение в нижнем диапазоне, в верхнем диапазоне, и в режиме разрядки. Эти режимы определяются состоянием выводов PD5 и PD6 контроллера. Во время разрядки PD6 имеет лог. 0 и кондерсатор разряжается через резистор R7 (220 Ом). В верхнем диапазоне измерений PD5 имеет лог. 1, заряжая конденсатор через R8 (1.8K) и PD6 находится в Z-состоянии чтобы позволить аналоговому компаратору сравнивать напряжение. В нижнем диапазоне измерений PD5 также находится в Z-состоянии, и конденсатор заряжается только через R6 (1.8MОм).

В качестве индикатора может использоваться любой дисплей на контроллере HD44780 размером 16x2 символов. Разводка коннектора дисплея показана на этом рисунке:

Устройство собрано на макетной плате и размещено в простом прямоугольном пластиковом корпусе. В крышке корпуса вырезаны отверстия под индикатор, кнопку и светодиод, которые закреплены термоклеем:

Программа измерителя емкости

В устройстве можно использовать контроллера atmega8 и atmega48/88/168 семейства. При замене контроллера в программе нужно изменить строку, отвечающую за конфигурацию таймера конкретного контроллера.

Для того, что бы измерить ёмкость какого-нибудь аккумулятора, обычно поступают так: подключают к этому аккумулятору резистор определённого номинала, который разряжает этот аккумулятор, и записывая величины тока, протекающего через резистор и напряжение на нём, дожидаются полной разрядки аккумулятора. По полученным данным строится график разряда, из которого и выясняют ёмкость. Проблема только в том, что по мере снижения напряжения на аккумуляторе ток через резистор так же будет уменьшаться, так что данные придётся интегрировать во времени, поэтому точность такого способа измерения ёмкости аккумулятора оставляет желать лучшего.

Если же разряжать аккумулятор не через резистор, а через источник стабильного тока, то это позволит определить ёмкость аккумулятора с очень большой точностью. Но здесь есть одна проблема - напряжение на аккумуляторе (1,2..3,7 В) недостаточно для работы источника стабильного тока. Но эту проблему можно обойти, добавив в схему измерения дополнительный источник напряжения.

Рис. 1. Схема для измерения ёмкости аккумулятора
V1 - исследуемый аккумулятор; V2 - вспомогательный источник напряжения; PV1 - вольтметр;
LM7805 и R1 - источник стабильного тока; VD1 - защитный диод.

На рисунке 1 изображена принципиальная схема установки для измерения ёмкости аккумулятора. Здесь видно, что измеряемый аккумулятор V1 включён последовательно с источником тока (его образуют интегральный стабилизатор LM7805 и резистор R1) и вспомогательным источником питания V2. Поскольку V1 и V2 соединены последовательно, то сумма их напряжений оказывается достаточной для работы источника тока. Так как минимальное напряжение, необходимое для работы источника тока составляет 7 В (из них 5 В - это напряжение на выходе микросхемы LM7805, т.е. в данном случае это падение напряжения на резисторе R1, и 2 В - это минимально допустимое падение напряжения между входом и выходом LM7805), то для работы источника тока суммы напряжений V1 и V2 хватает с некоторым запасом.

Вместо стабилизатора LM7805 можно использовать другой интегральный стабилизатор, например, LM317 с выходным напряжением 1,25 В и минимальным падением напряжения 3 В. Так как минимальное рабочее напряжение источника тока будет равно 4,25 В, то напряжение второго источника напряжения V2 можно снизить до 5 В. В случае использования стабилизатор LM317 величина тока стабилизации будет определяться по формуле I = 1,25/R1

Тогда для разрядного тока 100 мА величина сопротивления R1 должна быть примерно 12,5 Ом.

Как производить измерение ёмкости аккумулятора

Вначале подбором резистора R1 нужно установить разрядный ток - обычно величину разрядного тока выбирают равной рабочему току разряда аккумулятора. Следует так же иметь в виду, что некоторые модели интегральных стабилизаторов напряжения 7805 могут потреблять небольшой управляющий ток порядка 2...8 мА, так что величину тока в схеме рекомендуется проверять амперметром. Далее полностью заряженный аккумулятор V1 устанавливают в схему, и замкнув выключатель SA1 начинают отсчёт времени до того момента, когда напряжение на аккумуляторе снизится до минимальной величины - для разных типов аккумуляторных батарей эта величина различна, например, для никель-кадмиевых (NiCd) - 1,0 В, для никель-металлогидридных (NiMH) - 1,1 В, для литий-ионных (Li-ion) - 2,5...3 В, для каждой конкретной модели аккумулятора эти данные нужно смотреть в соответствующей документации.

После достижения минимального напряжения на аккумуляторе выключатель SA1 размыкают. Следует помнить, что разряд аккумулятора ниже минимального напряжения может вывести его из строя. Перемножив величину разрядного тока (в Амперах) на время разряда (в часах) получаем ёмкость аккумулятора (А*ч):

C = I * t

Рассмотрим практическое применение этого способа измерения ёмкости аккумулятора на конкретном примере.

Измерение ёмкости аккумулятора NB-11L

Аккумулятор NB-11L (рис. 2.) был приобретён в интернет-магазине DealeXtreme за 3,7 доллара (SKU: 169532). На корпусе аккумулятора указана его ёмкость - 750 мА*ч. На сайте его ёмкость указана уже скромнее - 650 мА*ч. Какая же реальная ёмкость этого аккумулятора?

Рис. 2. Li-ion аккумулятор NB-11L ёмкостью якобы 750 мА*ч
Fits CAN.NB-11L 3.7V 750mAh
Use specified charger only

Что бы подключить проводники к контактам аккумулятора потребуются две скрепки, которые следует изогнуть так, как показано на рисунке 3, и подключить их к "+" и "-" выводам аккумулятора (рис. 4.). Необходимо избегать замыкания контактов, лучше их заизолировать.

Для измерения ёмкости аккумулятора NB-11L его разрядный ток был принят равным 100 мА. Для этого величина резистора R1 была выбрана чуть больше 50 Ом. Мощность, рассеиваемая на резисторе R1 определяется по формуле P = V 2 /R1 , где V - напряжение на резисторе R1. В данном случае P=5 2 /50=0,5 Вт. Стабилизатор LM7805 следует установить на радиатор, если же под рукой нет подходящего радиатора, то микросхему можно частично погрузить в стакан с холодной водой, но так, что бы выводы остались сухими (в случае корпуса TO-220).

После установки полностью заряженного аккумулятора NB-11L в схему и замыкания выключателя SA1 начался отсчёт времени с периодическим контролем напряжения по вольтметру PV1. Данные заносились в таблицу, по которой был построен график разряда аккумулятора NB-11L (рис. 5).

Рис. 5. График напряжения на аккумуляторе NB-11L в процессе его разряда током 100 мА

Отсюда видно, что за 5 часов разряда током 0,1 А напряжение на аккумуляторе снизилось до 3 вольт и стало быстро падать дальше.

C = I * t = 0,1 * 5 = 0,5 А = 500 мА*ч.

Так что реальная же ёмкость аккумулятора NB-11L оказалась в 1,5 раза ниже указанной на нём.

Измеритель ёмкости АКБ

Первоисточник:

=================================

Усовершенствованный измеритель ёмкости

При разработке этого устройства, была поставлена задача, разработать измеритель ёмкости аккумуляторов со звуковой индикацией неисправности аккумулятора и окончания заряда. Так же в устройстве должна быть предусмотрена индикация (при нажатии на одну из кнопок) внутреннего сопротивления аккумулятора.
Схема устройства показана на рисунке. Основой устройства, является микроконтроллер ATMega 8. Клавиатура с однопроводным интерфейсом состоит из шести кнопок. Информация о всех параметрах аккумулятора, выводится на 9-и разрядный светодиодный индикатор. Измерение ёмкости основано на разряде аккумулятора стабильным током с подсчётом времени и дальнейшим перемножением этих величин.
Если подключенный аккумулятор неисправен (напряжение менее 1 Вольта), клавиатура заблокирована и излучатель BA1, издаёт три прерывистых звуковых сигнала частотой 600 Гц. Если напряжение аккумулятора больше 1 Вольта, при токе разрядки равном нулю (по умолчанию и по окончании разрядки до установленного напряжения), излучатель издаёт два прерывистых звуковых сигнала с частотой 3000 Гц.
После подключения аккумулятора, устанавливают напряжение, до которого его нужно разрядить (нажатием на кнопки SB3 и SB4). Шаг установки при кратковременном нажатии – 0,1 Вольт. При удержании – первые 10 значений – 0,1 Вольт, остальные – 1 Вольт. Далее, кнопками SB1 и SB2 устанавливают ток разрядки. Если кнопки SB1 и SB2 удерживать менее 5 секунд, значение тока не изменяется и отображается его текущее значение (символ i в нижней позиции (фото 1)). Если же кнопки SB1 и SB2 удерживать более 5 секунд, значение тока будет изменяться с переменным шагом – 50 и 150 мА. При этом символ i, будет отображаться в верхней позиции (фото 2). Максимальное значение разрядного тока - 2,55 A. Максимальное разрядное напряжение, выставляемое на индикаторе прибора, соответствует 25,5 V. Как только ток разряда примет значение больше нуля (при напряжении аккумулятора больше установленного порога или равном ему), звуковой сигнал исчезнет, а светодиод HL1, начнёт мигать с частотой 0,25 Гц.
При нажатии на кнопку SB5 (только при токе разряда, равном нулю), запоминается текущее напряжение, затем контролируется напряжение при токе, равном 1 А. Внутреннее сопротивление в Омах, определяется как разность этих напряжений и выводится в младшие разряды индикатора с символом r (фото 3).
При нажатии на кнопку SB6, в старших разрядах отображается текущее напряжение аккумулятора. По умолчанию, в старших разрядах, отображается напряжение, до которого необходимо разрядить аккумулятор, а в младших ёмкость в формате ХХ, ХХ А/ч. При этом не значащие нули десятков Вольт и Ампер/часов, гасятся программно.

=================================


Теперь кое что от себя. Схему я немного переделал на свой лад, а именно поставил индикатор от АОНа и сменил злополучную LM358 на МСР601. Ну не смог я добиться нормальной линейности в измерениях с LM358, хоть и перепробовал их не одну. Зато с МСР601 линейность получилась превосходная =< 1,5% по всему диапазону, да ещё и ток разрядки аккумулятора при отключённом ИТУН (DA2, VT1 с обвязкой) составил менее одного миллиампера. Печатку я переделал под своё усмотрение, в основном применил SMD вариант деталей. Моя печатка .

А вот вариант моей схемы:




Пару строк о наладке:

Налаживание

Налаживание правильно собранного из исправных деталей устройства заключается в его калибровке с помощью образцовых вольтметра и амперметра. После включения устройства при нулевых показаниях индикатора HG1 параллельно конденсатору С6 подключают образцовый вольтметр и подают на него напряжение (около 10 В) от стабилизированного источника питания. Подборкой резистора R8 при нажатой кнопке SB6 сравнивают показания в старших разрядах индикатора HG1 и образцового вольтметра. Затем последовательно с источником питания включают образцовый амперметр, устанавливают ток разрядки около 1 А и подборкой резистора R17 сравнивают показания индикатора HG1 и образцового амперметра. Резистором R21 (в паре с R17) настраивают линейность прибора при измерении тока и им же устанавливают наименьший ток разряда аккумулятора при отключённом ИТУН.

Который показал очень достойную работу, решил сделать не менее достойный и качественный цифровой вольтамперметр на микроконтроллере, по совместительству оснащённый омметром нагрузки и ёмкостеметром заряжаемых аккумуляторов. Имеется два варианта схемы вольтамперметра:

Для микроконтроллера ATmega8 в корпусе TQFP32


Для микроконтроллера ATmega8 в корпусе PDIP

Несколько вариантов печатных плат можно .

Характеристики измерителя А/В

  • измеряемое напряжение: 0 В – 30 В, шаг 10 мВ;

  • измеряемый ток: 0 А – 99 А, шаг 10 мА;
  • возможно отображение измеряемых величин на LCD дисплее (однострочном или двухстрочном).

  • Схема подключения этого универсального измерителя производится согласно рисунка:


    Измерение тока проводится с использованием шунта, который подключен последовательно с нагрузкой в цепи отрицательной (общей) клеммы блока питания. Устройство запитывается от основного БП. Дополнительной функцией, которую выполняет микроконтроллер, является управление вентилятором охлаждения радиатора выходного транзистора блока питания.




    При использовании двухстрочного дисплея имеется возможность отображения значения сопротивления подключенной нагрузки. А при использовании блока питания для зарядки литий-ионных аккумуляторов имеется функция отображения емкости АКБ, что дает возможность оценить их уровень разряда.

    Внутреннее разрешение вольтамперметра по диапазону измерения тока рассчитывается согласно выражения:

    Разрешение [мА] = 1/(R[Ом]х3.2)


    Падение напряжения на шунте не должно превышать 2.4 В, поэтому значение сопротивления шунта должно быть меньше 2.4/Imax[A].



    Фуз-биты

    При программировании и установке Fuse-битов необходимо учитывать, что микроконтроллер должен быть настроен на работу от внутреннего RC генератора 1 МГц, а также необходимо установить бит BODEN . Прошивки для .

    Настройка цифрового вольтамперметра



    Кнопка S1 – сброс/установка параметров. Для входа в режим установки измерителя надо удерживая кнопку нажатой, подать питание на схему. Первый параметр для настройки – опорное напряжение для АЦП МК. Оно является основным фактором погрешности измерений. Необходимо измерить опорное напряжение на выводе 20 микроконтроллера (для микроконтроллера в корпусе PDIP – вывод 21). Измеренное значение надо прописать в этом «сервисном меню» при помощи этой же кнопки S1 , иначе, по умолчанию, принимается значение опорного напряжения Vref = 2.56 В (соответственно техническому описанию на микроконтроллер).

    Установка значения сопротивления резистора-шунта. Если номинал шунта известен, то нажатиями на кнопку S1 необходимо добиться отображения на дисплее соответствующего значения и затем не нажимать кнопку в течении 5 с для сохранения значения. Если значение сопротивления шунта неизвестно, то необходимо на выход блока питания подключить амперметр, выставить некоторый ток при помощи регулятора ограничения тока БП и нажать кнопку S1 . Кнопку необходимо нажимать, пока показания амперметра и нашего устройства (с правой стороны на дисплее, с левой стороны отображается значение шунта) не станут равными. Для сохранения параметров кнопку не нажимать в течении 5 секунд. Также S1 используется для сброса значения электрической емкости при зарядке Li аккумуляторов.

    Сопротивление R9 – точная настройка поддиапазона делителя напряжения. Для устранения ошибки преобразования АЦП диапазон измерений разбит на два поддиапазона 0 В – 10 В и 10 В – 30 В. Для настройки необходимо на выход блока питания подключить вольтметр и установить выходное напряжение на уровне около 9 В, и регулируя R9 добиться одинаковых показаний вольтметра и нашего устройства.

    Сопротивление R10 – грубая настройка поддиапазона делителя напряжения. Процедура аналогичная точной настройке, но необходимо установить выходное напряжение блока питания около 19 В, и регулируя резистор R10 добиться совпадения показаний.

    Сопротивление R1 – регулировка контрастности LCD. Если после сборки устройства на дисплее ничего не отображается, то сперва необходимо отрегулировать контрастность дисплея.

    Разъём J1 – подключение вентилятора. Коннектор J2 – питание модуля вольтамперметра (+12 В). Если ваш блок питания имеет выход стабилизированного напряжения +12 В, то его можно подключить к этому коннектору, и в таком случае можно не использовать в схеме регулятор напряжения U2. Такое решение имеет свои плюсы т.к. возможно подключить более мощный вентилятор охлаждения. Если выхода +12 В у вашего блока питания нет, то этот коннектор необходимо оставить не подключенным.

    Разъём J3 – питание модуля вольтамперметра. Напряжение питания +35 В подается с диодного моста блока питания. Перед подключением необходимо уточнить параметры используемого регулятора напряжения U2 и уровень напряжения с диодного моста, чтобы не повредить регулятор U2. Но с другой стороны, минимальное напряжение, подаваемое на этот коннектор, не должно быть ниже 9 В или 6.5 В, если используются регуляторы с низким падением напряжения (LDO). Данный коннектор должен быть подключен независимо от того, подключен ли коннектор J2 к питанию +12 В.

    Разъём J4 – подключение линий измерения напряжения и тока.

    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: