Датчик считывания оборотов двигателя. Датчики частоты вращения

.
Радиолюбительский зуд не давал покоя - захотелось иметь на станочке показометр оборотов. Вариант с оптическим энкодером показался слишком сложным. Датчика холла, который применяется во всех автомобилях, не было под рукой. И тут на одном форуме подкинули идейку - попробовать ИК сенсор. Как раз без дела лежал ИК датчик препятствий, который не знал куда применить. Решил его попробовать - результат под катом.

Данный модуль применяется в основном в ардуинщиками в роботостроительстве как ИК датчик препятствия. Представляет маленькую очень бюджетную платку (особенно если покупать партиями штук по 10)

Схема у этого сенсора очень простая


В основе лежит ИК пара диод-транзистор. Что вроде L-53P3C/L-53F3C работающие в диапазоне 940нм
Компаратор LM393 сравнивает уровень фоторанзистора с уровнем, выставляемым подстроечным резистором.
Подцепил к валу шпинделя кусочек фольги, поднес сенсор к валу, покрутил подстроечник - модуль стал моргать светодиодом в так вращения.


Поковырявшись в своей барахолке нашел и
Максимальная скорость вращения у мотора 12000RPM и лучше было бы применить 5-разрядный индикатор, но будем работать с чем имеем
Накидал такую схему


Порядок подключения выводов индикатора к микроконтроллеру значения не имеет (так как настраивается в программе) и обусловлен исключительно из удобства проектирования печатной платы


«Квадратный» дизайн платы потому что на данном этапе я осваивал изготовление печатных плат на станке ЧПУ
Закругленные полигоны сложнее, а главное, дольше выбирать гравировкой.
Основным достоинством изготовления плат на станке является то, что весь процесс происходит не отрывая зада от кресла. С покупкой ламинатора я отказался от этого метода, оставив для станка сверление отверстий и обрезку плат.
Итак гравируем, сверлим, режем






И вот можно отлаживать готовую плату


Сразу делаю корпус из обрезков ПВХ пластика














Для работы индикатора применяется , позволяющая подключать индикатор к каким угодно выводам МК, применять индикаторы как с общим катодом, так и анодом да еще и яркостью управлять.
Для измерения частоты попробовал . МК с ней отлично мерит сигнал с генератора от 10 до 200Гц (а больше мне и не нужно)





А вот когда на вход контроллера подал с сигнал с сенсора, результат получился плачевным.
Частота прыгала как ненормальная. Виной этому оказался «дребезг» сигнала с оптического датчика. Фольга давала массу помех. Попытка настроить сигнал подстроечником или заменить кусочек фольки на другой не дали ощутимого результата.
Тогда я решил давить «дребезг» программно. Осциллограф показал, что помехами являются импульсы в 0.3 - 1 мкс, тогда как сигнал - это импульсы 5мс (При частоте 12000RPM) и больше.

В результате родилась такая программка с подавлением помех длительностью менее 2мкс

// Библиотека работы с 7-сегментным индикатором // https://github.com/sparkfun/SevSeg #include SevSeg myDisplay; byte displayType = COMMON_CATHODE; //Your display is either common cathode or common anode byte digit1 = 18; byte digit2 = 19; byte digit3 = 8; byte digit4 = 10; byte segA = 17; byte segB = 9; byte segC = 12; byte segD = 14; byte segE = 15; byte segF = 16; byte segG = 13; byte segDP = 11; byte numberOfDigits = 4; int dot = 0; uint32_t ms, ms1 = 0, ms0 = 0, ms2 = 9; uint32_t rps = 0; uint32_t count = 0; char buf; void setup(){ // Инициализация индикатора myDisplay.Begin(displayType, numberOfDigits, digit1, digit2, digit3, digit4, segA, segB, segC, segD, segE, segF, segG, segDP); myDisplay.SetBrightness(100); myDisplay.DisplayString("----", 0); // Инициализация входа для счета импульсов attachInterrupt(0, pulseCount, RISING); } void loop(){ ms = millis(); char s; uint16_t rpm = 0; // Перевыдача дисплея myDisplay.DisplayString(buf, dot); // Каждую секунду перевыдаем значение скорости if(ms2 == 0 || ms2 > ms || (ms - ms2)>1000){ ms2 = ms; // Переводим в коичество оборотов в минуту rpm = rps*60; // Отображение 10=тичной точки, сли число больше 4-х разрядов if(rpm > 9999){ dot = 2; sprintf(buf,"%4d",rpm/10); } else{ dot = 0; sprintf(buf,"%4d",rpm); } rps = 0; } } /** * Счетчик импульсов */ void pulseCount(){ uint32_t ms = micros(); // Убираем импулься менее 2 мс (дребезг) if(ms - ms0 > 2000)count++; ms0 = ms; // 0.5 сек цикл подсчета импульсов if(ms - ms1 > 500000){ ms1 = ms; rps = count*2; count = 0; } }


Программа показала 100% результат с тестового генератора. При включенном моторе с сенсора показывались стабильные обороты, которые хорошо коррелировали с режимом работы мотора. На том и остановимчя







Еще одна проблема нартсовалась при выборе места установки счетчика на станок.
В длинных проводах наводились сильные помехи от мотора и БП и индикатор, отлично работавший «на коленках» никак не хотел работать на станке. В результате смонтировал контроллер в непосредственной близости от сенсора и запитал его через импульсный DC-DC преобразователь от 24В. (Напряжения для шаговиков, подсветки, вентиляторов охлаждения).





Так мой новый станочек обзавелся счетчиком оборотов шпинделя. индикаторы К слову, данный измеритель должен практически без изменения схемы и программы заработать и с «кошерным» датчиком холла и магнитиком на валу.

Пока собирал станок, приехали 5-ти разрядные индикаторы. Хотел переделать измеритель скорости вращения на них с более компактным Atmega8 в TQFP32. Но потом решил, что лучшее - враг хорошего.

Датчики частоты вращения двигателя используются в системах управления двигателем для:

  • измерения числа оборотов двигателя
  • определения положения коленчатого вала (положение поршня двигателя)

Число оборотов рассчитывается по интервалу между сигналами датчика скорости вращения.

Индуктивные датчики скорости вращения

Рис. Индуктивный датчик скорости вращения (конструкция):

  1. Постоянный магнит
  2. Корпус датчика
  3. Корпус двигателя
  4. Полюсный контактный штифт
  5. Обмотка
  6. Воздушный зазор
  7. Зубчатое колесо с точкой отсчета

Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту.

Рис. Сигнал индуктивного датчика скорости вращения двигателя:

  1. Впадина
  2. Опорный сигнал

Активные датчики скорости вращения

Активные датчики скорости вращения работают по магнитостатическому принципу. Амплитуда выходного сигнала не зависит от числа оборотов. Благодаря этому можно измерять скорость вращения и при очень низком числе оборотов (квазистатическое определение числа оборотов).

Дифференциальный датчик Холла

На проводящей ток пластинке, по которой вертикально проходит магнитная индукция В, поперечно к направлению тока можно снимать напряжение UH (напряжение Холла), пропорциональное направлению тока.

Рис. Принцип работы дифференциального датчика Холла:

  • а Расположение датчика
  • b Сигнал датчика Холла
  • большая амплитуда при маленьком воздушном зазоре
  • маленькая амплитуда при большом воздушном зазоре
  • с Выходной сигнал
  1. Магнит
  2. Датчик Холла 1
  3. Датчик Холла 2
  4. Зубчатое колесо

В дифференциальном датчике Холла магнитное поле вырабатывается постоянным магнитом (поз. 1). Между магнитом и импульсным кольцом (4) находятся два сенсорных элемента Холла (2 и 3). Магнитный поток, который проходит сквозь них, зависит от того, находится ли датчик скорости вращения напротив зубца или паза. Благодаря созданию разности сигналов от обоих датчиков достигается снижение магнитных сигналов возмущения и улучшенное соотношение сигнала/ шума. Боковые поверхности сигнала датчика могут обрабатываться без оцифровывания непосредственно в блоке управления.

Вместо ферромагнитного зубчатого колеса используются также многополюсные колеса. Здесь на немагнитном металлическом носителе установлен намагничивающийся пластик, который попеременно намагничивается. Эти северные и южные полюсы принимают на себя функцию зубцов колеса.

AMR-датчики

Рис. Принцип определения числа оборотов с помощью датчика AMP:

  • а Размещение
  • в различные моменты времени
  • b Сигнал датчика AMP
  • с Выходной сигнал
  1. Импульсное (активное) колесо
  2. Сенсорный элемент
  3. Магнит

Электрическое сопротивление магнито-резистивного материала (AMP, анизотропный магниторезистивный) является анизотропным. Это означает, что оно зависит от направления магнитного поля, которое на него воздействует. Это свойство используется в AMP-датчике. Датчик находится между магнитом и импульсным кольцом. Линии поля изменяют свое направление, когда вращается импульсное (активное) колесо. В результате формируется синусоидальное напряжение, которое усиливается в схеме обработки данных и преобразуется в сигнал прямоугольной формы.

GMR-датчики

Усовершенствование активных датчиков скорости вращения отражено в использовании технологии GMR (ГМР) (Giant Magneto-Resistance). По причине высокой чувствительности по сравнению с датчиками AMP здесь возможны большие воздушные зазоры, за счет чего предполагаются использования в трудных сферах применения. Более высокая чувствительность производит меньше шумов фронта сигнала.

В ГМР-датчиках возможны также все двухпроводные порты, используемые ранее в датчиках скорости вращения Холла.

По предметам школьной программы набирают все большую популярность среди учащихся. В последнее время именно доступность интернета и мобильных гаджетов привела к резкому скачку числа участников таких мероприятий.
Но, если раньше участниками олимпиад по школьным предметам были в основном только отличники и успевающие ученики, то сейчас участником всероссийской олимпиады может стать совершенно любой школьник.

Портал всероссийских дистанционных олимпиад «Отличник» на своей странице в сети выложил отчет о результатах своих дистанционных олимпиад за последние годы. Из этого отчета видно, какие школьные предметы можно считать сводными для освоения и в каких заданиях участники чаще всего делают ошибки.

Самыми сложными, по мнению организаторов олимпиад и конкурсов «Отличник», являются предметы физика и химия. Олимпиада по химии включает в себя множество разных заданий из разделов неорганической и органической химии, и все они имеют примерно одинаковый процент ошибок участников. И совсем другая картина видна с заданиями по физике. О них и пойдет речь в данной статье.

27.06.2019

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Рис. 1. Система охлаждения дизелей


1 - охладитель топлива; 2 - маслоохладитель турбонагнетателей; 3 - расширительная цистерна ГД; 4 - водоохладитель ГД; 5 - маслоохладитель ГД; 6 - кингстонный ящик; 7 - фильтры забортной воды; 8 - кингстонный ящик; 9 - приемные фильтры ВДГ; 10 - насосы забортной воды ВДГ; 11 - насос пресной воды ГД; 12 - основной и резервный насосы забортной воды ГД; 13 - маслоохладитель ВДГ; 14 - водоохладитель ВДГ; 15 - ВДГ; 16 - расширительная цистерна ВДГ; 17 - опорный подшипник валопровода; 18 - главный упорный подшипник; 19 - главный двигатель; 20 - охладитель наддувочного воздуха; 21 - вода на охлаждение компрессоров; 22 - заполнение и пополнение системы пресной воды; 23 - подключение системы прогрева ДВС; 1оп - пресная вода; 1оз - забортная вода.

В качестве датчиков частоты вращения в системах автоматики применяют тахогенераторы - маломощные электрические машины постоянного и переменного тока. Для преобразования частоты вращения электродвигателей в напряжение применяют тахометрические мосты.

Тахогенераторы постоянного тока

Тахогенераторы постоянного тока в зависимости от способа возбуждения выполняют двух типов: магнитоэлектрические (возбуждаемые от постоянных магнитов) и электромагнитные (возбуждаемые от специальной обмотки) (рис. 1 а, б).

Напряжение на выходе тахогенератора при постоянном потоке возбуждения U вых = Е - IR я = Сеω - IR я

где Се = (U я - I яR я)/ω - постоянная машины, определяется из паспортных данных.

На холостом ходу (I =0) напряжение U вых = Е = Сеω . Следовательно, статическая характеристика тахогенератора U вых = f (ω) при холостом ходе линейна, так как Се = const (прямая I, рис. 1, в).


Рис. 1. Датчики частоты вращения (тахометрические генераторы постоянного тока): а) с возбуждением от постоянных магнитов, б) с электромагнитным возбуждением, в) статическая характеристика

При нагрузке статическая характеристика становится нелинейной (кривая 2). изменяется ее наклон, что является следствием реакции якоря и падения напряжения в обмотке якоря тахогенератора. В реальных тахогенераторах возникает падение напряжения на щетках, что приводит к появлению юны нечувствительности (кривая 3).

Для уменьшения искажения статических характеристик тахогенераторов используют при небольших нагрузках (I н = 0,01 - 0,02 А). Ток в цепи якоря I я = Е/(R я + R н), а выходное напряжение U вых = Е - IR я = Сеω - IR я.

Тахогенераторы постоянного тока широко применяются в автоматических системах регулирования электроприводов в качестве датчиков частоты вращения. Их достоинства - малая инерционности высокая точность, малые габариты и масса, а для магнитоэлектрических тахогенераторов еще и отсутствие источника питания. Недостаток - наличие коллектора со щетками.

Тахогенераторы переменного тока

Синхронные тахогенераторы - однофазная синхронная машина с ротором в виде постоянного магнита (рис. 2, а), У синхронных тахогенераторов с изменением угловой скорости вместе с амплитудой изменяется и частота выходного напряжения. Статические характеристики нелинейны. В динамической отношении синхронные тахогенераторы являются безинерционными элементами.

Асинхронный тахогенератор - это двухфазная асинхронная машина с полый немагнитным ротором (рис. 2, б). На статоре асинхронного тахогенератора размещаются две сдвинутые на 90 обмотки (возбуждения ОВ и генератора ОГ). Обмотка ОВ подключается к источнику переменного тока.


Рис. 2. Тахомерические генераторы переменного тока: а - синхронный, б - асинхронный

В обмотке OГ, являющейся выходной, при вращении ротора наводятся э.д.с. трансформации и вращения. Под действием э.д.с. вращения на выходе тахогенератора возникает напряжение U вых.

Статическая характеристика асинхронного тахогенератора также нелинейна. При изменении вращения ротора фаза выходного напряжения изменяется на 180°.

Асинхронные тахогенераторы используют как датчики угловой скорости, частоты вращения и ускорений. В последнем случае обмотка возбуждения асинхронного тахогенератора подключается к источнику постоянного тока.

Достоинства асинхронных тахогенераторов - надежность, малая инерционность. Недостатки - наличие на выходе остаточной э.д.с. при неподвижном роторе, относительно большие габариты.

Тахометрические мосты

Тахометрические мосты постоянного и переменного тока применяют в системах автоматики для создания обратной связи но частоте вращения электрических двигателей. Это позволяет упростить систему, так как отпадает необходимость в дополнительной электрической машине - тахогенераторе. При этом уменьшаются статические и динамические нагрузки на исполнительный двигатель.

Тахометрический мост постоянного тока представляет собой специальную мостовую схему (рис. 3, а), в одно из плеч которой включен якорь двигателя R я, а в другие - резисторы R1 , R2 , R п. К диагонали аb моста подводится напряжение сети U, питающее якорь двигателя, а с диагонали cd снимается напряжение U выхпропорциональное угловой скорости ω.

26 . Датчики частоты вращения

Датчики частоты вращения служат для определения числа оборотов вала двигателя за единицу времени и применяются в регулируемых приводных системах.

Датчики частоты вращения используются в тахометрах - приборах, измеряющих частоту вращения или угловую скорость вращающихся деталей. Тахометры бывают магнитные, вибрационные, часовые интегрирующие, стробоскопические, электронные интегрирующие, магнитно-индукционные, магнитно-электрические, частотно-импульсные, ферродинамические и другие.

В промышленности в настоящее время широкое распространение получили магнитно-индукционные датчики частоты вращения (тахогенераторы), генерирующие электрические импульсы напряжения приблизительно синусоидальный формы. Частота этого сигнала пропорциональна частоте вращения вала двигателя, где установлен индуктор.

Конструкция и принцип действия бесконтактного магнитно-индукционного датчика частоты вращения

Пример конструкции датчика . Магнитно-индукционный датчик состоит из катушки индуктивности, внутри которой находится сердечник из мягкой стали, соединенный с постоянным магнитом. Стальной сердечник расположен через небольшой воздушный зазор прямо над кромкой ферромагнитного зубчатого кольца (зубчатки), находящегося в магнитном поле постоянного магнита. Если прямо напротив датчика попадает зуб кольца, то он концентрирует магнитное поле и усиливает поток магнитной индукции в катушке, а если напротив датчика становится выемка зубчатки, то магнитный поток ослабевает. Такие два состояния датчика постоянно чередуются при вращении импульсной зубчатки вместе с валом, частота вращения которого, собственно говоря, и является измеряемой характеристикой. В катушке наводятся импульсы напряжения переменного тока, частота которых свидетельствует о частоте вращения вала.

Назначение . Бесконтактные индуктивные датчики частоты вращения широко применяются для контроля и регистрации частоты вращения различных двигателей, в т.ч. на транспортных средствах.

Тахогенераторы

Типичный тахогенератор представляет собой электрическую машину малой мощности, которая преобразует механическое вращение в электрический сигнал. Конструкция асинхронного тахогенератора ничем не отличается от асинхронного двигателя с полым немагнитным ротором. Подобно двигателю, одна из обмоток статора подключается к сети переменного тока (обмотка возбуждения), а другая - генераторная обмотка - служит для снятия выходного напряжения. Обмотки асинхронного генератора расположены под углом 90º друг к другу. Мощность выходного сигнала тахогенератора может достигать нескольких ватт. Помимо асинхронных, выпускаются синхронные тахогенераторы и тахогенераторы постоянного тока.

Пример тахогенератора

Тахогенератор GT 3 пр-ва компании Huebner, Германия

Основные технические характеристики

Выходное напряжение: 5 мВ/об/мин

Температурный коэффициент: -0,035 %/ºС

неравномерность характеристики: не более 1,2 %

Постоянная времени: 2 мкс

Мощность: 0,025 Вт

Диапазон рабочих температур: от -30 ºС до +130 ºС

Диаметр полого вала: 6 мм

Наибольшая частота вращения: 10000 об/мин

Момент инерции: 9 гсм2

Масса ротора: прибл. 20 г

Диаметр корпуса: 34 мм

Класс защиты: IP00; IP54

Тахогенератор постоянного тока - это машина постоянного тока с независимым возбуждением или возбуждением постоянными магнитами, работающая в генераторном режиме. По конструкции он почти не отличается от машин постоянного тока.

Тахогенераторы постоянного тока служат для измерения частоты вращения по значению выходного напряжения, а также для получения электрических сигналов, пропорциональных частоте вращения вала в схемах автоматического регулирования.

Основными требованиями, предъявляемыми к тахогенераторам, являются: а) линейность выходной характеристики; б) большая крутизна выходной характеристики; в) малое влияние на выходную характеристику изменения температуры окружающей среды и нагрузки; г) минимум пульсаций напряжения на коллекторе.

На. рис. 9.5 показаны принципиальные схемы тахогенераторов постоянного тока с электромагнитным возбуждением (а) и возбуждением постоянными магнитами (б).

(1)

где rа - сопротивление обмотки якоря, Ом; Rн - внутреннее сопротивление прибора, подключенного к тахогенератору, Ом.

Из (1) следует, что чем больше сопротивление прибора Rн тем больше крутизна выходной характеристики Сu. Наибольшая крутизна у выходной характеристики, соответствующей режиму холостого хода тахогенератора, когда обмотка якоря разомкнута" (RH = ∞).

С ростом тока нагрузки (уменьшением RH) крутизна выходной характеристики уменьшается (рис. 9.6, а). У современных тахогенераторов постоянного тока Сu = (6÷260).10¯³В/(об/мин), что превышает крутизну асинхронных тахогенераторов.


Выходная характеристика тахогенератора постоянного тока - прямая линия. Однако опыт показывает, что выходная характеристика прямолинейна только в начальной части (при малых относительных частотах вращения), а с ростом частоты вращения она становится криволинейной (рис. 9.6, а). Криволинейность характеристики усиливается при уменьшении сопротивления нагрузки RH и увеличении частоты вращения n. Это объясняется размагничивающим действием реакции якоря в тахогенераторе. Для уменьшения криволинейности выходной характеристики не следует использовать тахогенератор на его предельных частотах вращения и применять в качестве нагрузки приборы с малым внутренним сопротивлением.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: